ھېسابلاش
0
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{e^{x}-e^{x}}{2}\right)^{14}\mathrm{d}x
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 3 بىلەن 11 نى قوشۇپ، 14 نى چىقىرىڭ.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{0}{2}\right)^{14}\mathrm{d}x
e^{x} بىلەن -e^{x} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0^{14}\mathrm{d}x
نۆلنى نۆلدىن باشقا ھەرقانداق سانغا بۆلسەك نۆل بولىدۇ.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0\mathrm{d}x
0 نىڭ 14-دەرىجىسىنى ھېسابلاپ 0 نى چىقىرىڭ.
\int 0\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
0
ئادەتتىكى ئىنتېگراللار قائىدىسى \int a\mathrm{d}x=ax جەدۋىلى ئارقىلىق 0 نىڭ ئىنتېگرالىنى تېپىڭ.
0+0
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
0
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}