ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{e^{x}-e^{x}}{2}\right)^{14}\mathrm{d}x
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 3 بىلەن 11 نى قوشۇپ، 14 نى چىقىرىڭ.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{0}{2}\right)^{14}\mathrm{d}x
e^{x} بىلەن -e^{x} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0^{14}\mathrm{d}x
نۆلنى نۆلدىن باشقا ھەرقانداق سانغا بۆلسەك نۆل بولىدۇ.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0\mathrm{d}x
0 نىڭ 14-دەرىجىسىنى ھېسابلاپ 0 نى چىقىرىڭ.
\int 0\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
0
ئادەتتىكى ئىنتېگراللار قائىدىسى ⁦\int a\mathrm{d}x=ax⁩ جەدۋىلى ئارقىلىق ⁦0⁩ نىڭ ئىنتېگرالىنى تېپىڭ.
0+0
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
0
ئاددىيلاشتۇرۇڭ.