ھېسابلاش
-\frac{\left(5-2x\right)^{4}}{2}+С
w.r.t. x نى پارچىلاش
4\left(5-2x\right)^{3}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int 4\left(125-150x+60x^{2}-8x^{3}\right)\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ئارقىلىق \left(5-2x\right)^{3} نى يېيىڭ.
\int 500-600x+240x^{2}-32x^{3}\mathrm{d}x
تارقىتىش قانۇنى بويىچە 4 نى 125-150x+60x^{2}-8x^{3} گە كۆپەيتىڭ.
\int 500\mathrm{d}x+\int -600x\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int -32x^{3}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int 500\mathrm{d}x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
500x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
ئادەتتىكى ئىنتېگراللار قائىدىسى \int a\mathrm{d}x=ax جەدۋىلى ئارقىلىق 500 نىڭ ئىنتېگرالىنى تېپىڭ.
500x-300x^{2}+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x\mathrm{d}x نى \frac{x^{2}}{2} بىلەن ئالماشتۇرۇڭ. -600 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
500x-300x^{2}+80x^{3}-32\int x^{3}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{2}\mathrm{d}x نى \frac{x^{3}}{3} بىلەن ئالماشتۇرۇڭ. 240 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
500x-300x^{2}+80x^{3}-8x^{4}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{3}\mathrm{d}x نى \frac{x^{4}}{4} بىلەن ئالماشتۇرۇڭ. -32 نى \frac{x^{4}}{4} كە كۆپەيتىڭ.
500x-300x^{2}+80x^{3}-8x^{4}+С
ئەگەر F\left(x\right) بۇ f\left(x\right) نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن f\left(x\right) نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى F\left(x\right)+C تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى C\in \mathrm{R} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}