ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. x نى پارچىلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int 4\left(125-150x+60x^{2}-8x^{3}\right)\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ئارقىلىق \left(5-2x\right)^{3} نى يېيىڭ.
\int 500-600x+240x^{2}-32x^{3}\mathrm{d}x
تارقىتىش قانۇنى بويىچە 4 نى 125-150x+60x^{2}-8x^{3} گە كۆپەيتىڭ.
\int 500\mathrm{d}x+\int -600x\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int -32x^{3}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int 500\mathrm{d}x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
500x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
ئادەتتىكى ئىنتېگراللار قائىدىسى ⁦\int a\mathrm{d}x=ax⁩ جەدۋىلى ئارقىلىق ⁦500⁩ نىڭ ئىنتېگرالىنى تېپىڭ.
500x-300x^{2}+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x\mathrm{d}x⁩ نى ⁦\frac{x^{2}}{2}⁩ بىلەن ئالماشتۇرۇڭ. -600 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
500x-300x^{2}+80x^{3}-32\int x^{3}\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{2}\mathrm{d}x⁩ نى ⁦\frac{x^{3}}{3}⁩ بىلەن ئالماشتۇرۇڭ. 240 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
500x-300x^{2}+80x^{3}-8x^{4}
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{3}\mathrm{d}x⁩ نى ⁦\frac{x^{4}}{4}⁩ بىلەن ئالماشتۇرۇڭ. -32 نى \frac{x^{4}}{4} كە كۆپەيتىڭ.
500x-300x^{2}+80x^{3}-8x^{4}+С
ئەگەر ⁦F\left(x\right)⁩ بۇ ⁦f\left(x\right)⁩ نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن ⁦f\left(x\right)⁩ نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى ⁦F\left(x\right)+C⁩ تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى ⁦C\in \mathrm{R}⁩ نى قوشۇڭ.