ھېسابلاش
С-64x^{3}-96x^{6}-64x^{9}-16x^{12}
w.r.t. x نى پارچىلاش
-192x^{2}\left(x^{3}+1\right)^{3}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int -3x^{2}\left(64\left(x^{3}\right)^{3}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ئارقىلىق \left(4x^{3}+4\right)^{3} نى يېيىڭ.
\int -3x^{2}\left(64x^{9}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 3 بىلەن 3 نى كۆپەيتىپ، 9 نى تېپىڭ.
\int -3x^{2}\left(64x^{9}+192x^{6}+192x^{3}+64\right)\mathrm{d}x
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 3 بىلەن 2 نى كۆپەيتىپ، 6 نى تېپىڭ.
\int -192x^{11}-576x^{8}-576x^{5}-192x^{2}\mathrm{d}x
تارقىتىش قانۇنى بويىچە -3x^{2} نى 64x^{9}+192x^{6}+192x^{3}+64 گە كۆپەيتىڭ.
\int -192x^{11}\mathrm{d}x+\int -576x^{8}\mathrm{d}x+\int -576x^{5}\mathrm{d}x+\int -192x^{2}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
-192\int x^{11}\mathrm{d}x-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
-16x^{12}-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{11}\mathrm{d}x نى \frac{x^{12}}{12} بىلەن ئالماشتۇرۇڭ. -192 نى \frac{x^{12}}{12} كە كۆپەيتىڭ.
-16x^{12}-64x^{9}-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{8}\mathrm{d}x نى \frac{x^{9}}{9} بىلەن ئالماشتۇرۇڭ. -576 نى \frac{x^{9}}{9} كە كۆپەيتىڭ.
-16x^{12}-64x^{9}-96x^{6}-192\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{5}\mathrm{d}x نى \frac{x^{6}}{6} بىلەن ئالماشتۇرۇڭ. -576 نى \frac{x^{6}}{6} كە كۆپەيتىڭ.
-16x^{12}-64x^{9}-96x^{6}-64x^{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{2}\mathrm{d}x نى \frac{x^{3}}{3} بىلەن ئالماشتۇرۇڭ. -192 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
-64x^{3}-96x^{6}-64x^{9}-16x^{12}+С
ئەگەر F\left(x\right) بۇ f\left(x\right) نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن f\left(x\right) نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى F\left(x\right)+C تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى C\in \mathrm{R} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}