ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. x نى پارچىلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int 3-x-x^{2}+9\mathrm{d}x
x^{2}-9 نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\int 12-x-x^{2}\mathrm{d}x
3 گە 9 نى قوشۇپ 12 نى چىقىرىڭ.
\int 12\mathrm{d}x+\int -x\mathrm{d}x+\int -x^{2}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int 12\mathrm{d}x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
12x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
ئادەتتىكى ئىنتېگراللار قائىدىسى ⁦\int a\mathrm{d}x=ax⁩ جەدۋىلى ئارقىلىق ⁦12⁩ نىڭ ئىنتېگرالىنى تېپىڭ.
12x-\frac{x^{2}}{2}-\int x^{2}\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x\mathrm{d}x⁩ نى ⁦\frac{x^{2}}{2}⁩ بىلەن ئالماشتۇرۇڭ. -1 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
12x-\frac{x^{2}}{2}-\frac{x^{3}}{3}
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{2}\mathrm{d}x⁩ نى ⁦\frac{x^{3}}{3}⁩ بىلەن ئالماشتۇرۇڭ. -1 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
12x-\frac{x^{2}}{2}-\frac{x^{3}}{3}+С
ئەگەر ⁦F\left(x\right)⁩ بۇ ⁦f\left(x\right)⁩ نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن ⁦f\left(x\right)⁩ نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى ⁦F\left(x\right)+C⁩ تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى ⁦C\in \mathrm{R}⁩ نى قوشۇڭ.