ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. x نى پارچىلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int x\times 2^{2}t^{2}\left(x^{2}\right)^{2}\mathrm{d}x
\left(2tx^{2}\right)^{2} نى يېيىڭ.
\int x\times 2^{2}t^{2}x^{4}\mathrm{d}x
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\int x\times 4t^{2}x^{4}\mathrm{d}x
2 نىڭ 2-دەرىجىسىنى ھېسابلاپ 4 نى چىقىرىڭ.
\int x^{5}\times 4t^{2}\mathrm{d}x
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 1 بىلەن 4 نى قوشۇپ، 5 نى چىقىرىڭ.
4t^{2}\int x^{5}\mathrm{d}x
⁦\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x⁩ ئارقىلىق كونستانتنى فاكتورلىرىغا ئايرىڭ.
4t^{2}\times \frac{x^{6}}{6}
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{5}\mathrm{d}x⁩ نى ⁦\frac{x^{6}}{6}⁩ بىلەن ئالماشتۇرۇڭ.
\frac{2t^{2}x^{6}}{3}
ئاددىيلاشتۇرۇڭ.
\frac{2t^{2}x^{6}}{3}+С
ئەگەر ⁦F\left(x\right)⁩ بۇ ⁦f\left(x\right)⁩ نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن ⁦f\left(x\right)⁩ نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى ⁦F\left(x\right)+C⁩ تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى ⁦C\in \mathrm{R}⁩ نى قوشۇڭ.