ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int _{4}^{9}\left(\sqrt{x}\right)^{2}+\sqrt{x}\mathrm{d}x
تارقىتىش قانۇنى بويىچە \sqrt{x}+1 نى \sqrt{x} گە كۆپەيتىڭ.
\int _{4}^{9}x+\sqrt{x}\mathrm{d}x
\sqrt{x} نىڭ 2-دەرىجىسىنى ھېسابلاپ x نى چىقىرىڭ.
\int x+\sqrt{x}\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int x\mathrm{d}x+\int \sqrt{x}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\frac{x^{2}}{2}+\int \sqrt{x}\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x\mathrm{d}x⁩ نى ⁦\frac{x^{2}}{2}⁩ بىلەن ئالماشتۇرۇڭ.
\frac{x^{2}}{2}+\frac{2x^{\frac{3}{2}}}{3}
\sqrt{x} نى x^{\frac{1}{2}} شەكلىدە قايتا يېزىڭ. ⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{\frac{1}{2}}\mathrm{d}x⁩ نى ⁦\frac{x^{\frac{3}{2}}}{\frac{3}{2}}⁩ بىلەن ئالماشتۇرۇڭ. ئاددىيلاشتۇرۇڭ.
\frac{9^{2}}{2}+\frac{2}{3}\times 9^{\frac{3}{2}}-\left(\frac{4^{2}}{2}+\frac{2}{3}\times 4^{\frac{3}{2}}\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
\frac{271}{6}
ئاددىيلاشتۇرۇڭ.