ھېسابلاش
2\sqrt{2}-\frac{7}{2}\approx -0.671572875
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int \frac{1}{\sqrt{x}}-x\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int -x\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int \frac{1}{\sqrt{x}}\mathrm{d}x-\int x\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
2\sqrt{x}-\int x\mathrm{d}x
\frac{1}{\sqrt{x}} نى x^{-\frac{1}{2}} شەكلىدە قايتا يېزىڭ. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{-\frac{1}{2}}\mathrm{d}x نى \frac{x^{\frac{1}{2}}}{\frac{1}{2}} بىلەن ئالماشتۇرۇڭ. ئاددىلاشتۇرۇڭ ۋە كۆرسەتكۈچتىن رادىكال شەكىلگە ئايلاندۇرۇڭ.
2\sqrt{x}-\frac{x^{2}}{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x\mathrm{d}x نى \frac{x^{2}}{2} بىلەن ئالماشتۇرۇڭ. -1 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
2\times 2^{\frac{1}{2}}-\frac{2^{2}}{2}-\left(2\times 1^{\frac{1}{2}}-\frac{1^{2}}{2}\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
2\sqrt{2}-\frac{7}{2}
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}