ھېسابلاش
-\frac{16}{3}\approx -5.333333333
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int _{0}^{4}6-\left(16-8\sqrt{x}+\left(\sqrt{x}\right)^{2}\right)\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(4-\sqrt{x}\right)^{2} نى يېيىڭ.
\int _{0}^{4}6-\left(16-8\sqrt{x}+x\right)\mathrm{d}x
\sqrt{x} نىڭ 2-دەرىجىسىنى ھېسابلاپ x نى چىقىرىڭ.
\int _{0}^{4}6-16+8\sqrt{x}-x\mathrm{d}x
16-8\sqrt{x}+x نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\int _{0}^{4}-10+8\sqrt{x}-x\mathrm{d}x
6 دىن 16 نى ئېلىپ -10 نى چىقىرىڭ.
\int -10+8\sqrt{x}-x\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int -10\mathrm{d}x+\int 8\sqrt{x}\mathrm{d}x+\int -x\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int -10\mathrm{d}x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
-10x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
ئادەتتىكى ئىنتېگراللار قائىدىسى \int a\mathrm{d}x=ax جەدۋىلى ئارقىلىق -10 نىڭ ئىنتېگرالىنى تېپىڭ.
-10x+\frac{16x^{\frac{3}{2}}}{3}-\int x\mathrm{d}x
\sqrt{x} نى x^{\frac{1}{2}} شەكلىدە قايتا يېزىڭ. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{\frac{1}{2}}\mathrm{d}x نى \frac{x^{\frac{3}{2}}}{\frac{3}{2}} بىلەن ئالماشتۇرۇڭ. ئاددىيلاشتۇرۇڭ. 8 نى \frac{2x^{\frac{3}{2}}}{3} كە كۆپەيتىڭ.
-10x+\frac{16x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x\mathrm{d}x نى \frac{x^{2}}{2} بىلەن ئالماشتۇرۇڭ. -1 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
-10x-\frac{x^{2}}{2}+\frac{16x^{\frac{3}{2}}}{3}
ئاددىيلاشتۇرۇڭ.
-10\times 4-\frac{4^{2}}{2}+\frac{16}{3}\times 4^{\frac{3}{2}}-\left(-10\times 0-\frac{0^{2}}{2}+\frac{16}{3}\times 0^{\frac{3}{2}}\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
-\frac{16}{3}
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}