ھېسابلاش
\frac{1024}{105}\approx 9.752380952
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int _{0}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(4x-x^{3}\right)^{2} نى يېيىڭ.
\int _{0}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 1 بىلەن 3 نى قوشۇپ، 4 نى چىقىرىڭ.
\int _{0}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 3 بىلەن 2 نى كۆپەيتىپ، 6 نى تېپىڭ.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{2}\mathrm{d}x نى \frac{x^{3}}{3} بىلەن ئالماشتۇرۇڭ. 16 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{4}\mathrm{d}x نى \frac{x^{5}}{5} بىلەن ئالماشتۇرۇڭ. -8 نى \frac{x^{5}}{5} كە كۆپەيتىڭ.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{6}\mathrm{d}x نى \frac{x^{7}}{7} بىلەن ئالماشتۇرۇڭ.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
ئاددىيلاشتۇرۇڭ.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{0^{7}}{7}-\frac{8}{5}\times 0^{5}+\frac{16}{3}\times 0^{3}\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
\frac{1024}{105}
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}