ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int _{0}^{1}6x^{2}-10x+9x-15\mathrm{d}x
2x+3 نىڭ ھەر بىر شەرتىنى 3x-5 نىڭ شەرتلىرىگە كۆپەيتىپ، تارقىتىش خاسلىقى قوللىنىڭ.
\int _{0}^{1}6x^{2}-x-15\mathrm{d}x
-10x بىلەن 9x نى بىرىكتۈرۈپ -x نى چىقىرىڭ.
\int 6x^{2}-x-15\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int 6x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -15\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
6\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -15\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
2x^{3}-\int x\mathrm{d}x+\int -15\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{2}\mathrm{d}x⁩ نى ⁦\frac{x^{3}}{3}⁩ بىلەن ئالماشتۇرۇڭ. 6 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
2x^{3}-\frac{x^{2}}{2}+\int -15\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x\mathrm{d}x⁩ نى ⁦\frac{x^{2}}{2}⁩ بىلەن ئالماشتۇرۇڭ. -1 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
2x^{3}-\frac{x^{2}}{2}-15x
ئادەتتىكى ئىنتېگراللار قائىدىسى ⁦\int a\mathrm{d}x=ax⁩ جەدۋىلى ئارقىلىق ⁦-15⁩ نىڭ ئىنتېگرالىنى تېپىڭ.
2\times 1^{3}-\frac{1^{2}}{2}-15-\left(2\times 0^{3}-\frac{0^{2}}{2}-15\times 0\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
-\frac{27}{2}
ئاددىيلاشتۇرۇڭ.