ھېسابلاش
0
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int -3x-\sqrt{x}\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int -3x\mathrm{d}x+\int -\sqrt{x}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
-3\int x\mathrm{d}x-\int \sqrt{x}\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
-\frac{3x^{2}}{2}-\int \sqrt{x}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x\mathrm{d}x نى \frac{x^{2}}{2} بىلەن ئالماشتۇرۇڭ. -3 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
-\frac{3x^{2}}{2}-\frac{2x^{\frac{3}{2}}}{3}
\sqrt{x} نى x^{\frac{1}{2}} شەكلىدە قايتا يېزىڭ. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{\frac{1}{2}}\mathrm{d}x نى \frac{x^{\frac{3}{2}}}{\frac{3}{2}} بىلەن ئالماشتۇرۇڭ. ئاددىيلاشتۇرۇڭ. -1 نى \frac{2x^{\frac{3}{2}}}{3} كە كۆپەيتىڭ.
-\frac{3}{2}\times \left(0\times 4\right)^{2}-\frac{2}{3}\times \left(0\times 4\right)^{\frac{3}{2}}-\left(-\frac{3}{2}\times 0^{2}-\frac{2}{3}\times 0^{\frac{3}{2}}\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
\text{Indeterminate}
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}