ھېسابلاش
\frac{1}{12}\approx 0.083333333
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int 2y-3y^{2}-y^{2}\mathrm{d}y
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int 2y\mathrm{d}y+\int -3y^{2}\mathrm{d}y+\int -y^{2}\mathrm{d}y
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
2\int y\mathrm{d}y-3\int y^{2}\mathrm{d}y-\int y^{2}\mathrm{d}y
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
y^{2}-3\int y^{2}\mathrm{d}y-\int y^{2}\mathrm{d}y
\int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int y\mathrm{d}y نى \frac{y^{2}}{2} بىلەن ئالماشتۇرۇڭ. 2 نى \frac{y^{2}}{2} كە كۆپەيتىڭ.
y^{2}-y^{3}-\int y^{2}\mathrm{d}y
\int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int y^{2}\mathrm{d}y نى \frac{y^{3}}{3} بىلەن ئالماشتۇرۇڭ. -3 نى \frac{y^{3}}{3} كە كۆپەيتىڭ.
y^{2}-y^{3}-\frac{y^{3}}{3}
\int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int y^{2}\mathrm{d}y نى \frac{y^{3}}{3} بىلەن ئالماشتۇرۇڭ. -1 نى \frac{y^{3}}{3} كە كۆپەيتىڭ.
y^{2}-\frac{4y^{3}}{3}
ئاددىيلاشتۇرۇڭ.
\left(\frac{1}{2}\right)^{2}-\frac{4}{3}\times \left(\frac{1}{2}\right)^{3}-\left(0^{2}-\frac{4}{3}\times 0^{3}\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
\frac{1}{12}
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}