ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int x^{4}-\frac{x^{2}}{2}\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int x^{4}\mathrm{d}x+\int -\frac{x^{2}}{2}\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int x^{4}\mathrm{d}x-\frac{\int x^{2}\mathrm{d}x}{2}
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
\frac{x^{5}}{5}-\frac{\int x^{2}\mathrm{d}x}{2}
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{4}\mathrm{d}x⁩ نى ⁦\frac{x^{5}}{5}⁩ بىلەن ئالماشتۇرۇڭ.
\frac{x^{5}}{5}-\frac{x^{3}}{6}
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{2}\mathrm{d}x⁩ نى ⁦\frac{x^{3}}{3}⁩ بىلەن ئالماشتۇرۇڭ. -\frac{1}{2} نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
\frac{1^{5}}{5}-\frac{1^{3}}{6}-\left(\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
\frac{1}{30}+\frac{\sqrt{2}}{60}
ئاددىيلاشتۇرۇڭ.