ھېسابلاش
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x+С
w.r.t. x نى پارچىلاش
\left(x^{2}+2\right)^{3}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ئارقىلىق \left(x^{2}+2\right)^{3} نى يېيىڭ.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 3 نى كۆپەيتىپ، 6 نى تېپىڭ.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{6}\mathrm{d}x نى \frac{x^{7}}{7} بىلەن ئالماشتۇرۇڭ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{4}\mathrm{d}x نى \frac{x^{5}}{5} بىلەن ئالماشتۇرۇڭ. 6 نى \frac{x^{5}}{5} كە كۆپەيتىڭ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{2}\mathrm{d}x نى \frac{x^{3}}{3} بىلەن ئالماشتۇرۇڭ. 12 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
ئادەتتىكى ئىنتېگراللار قائىدىسى \int a\mathrm{d}x=ax جەدۋىلى ئارقىلىق 8 نىڭ ئىنتېگرالىنى تېپىڭ.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
ئاددىيلاشتۇرۇڭ.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
ئەگەر F\left(x\right) بۇ f\left(x\right) نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن f\left(x\right) نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى F\left(x\right)+C تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى C\in \mathrm{R} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}