ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. x نى پارچىلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int \left(2x^{2}-x+2x-1\right)\left(x+9\right)\mathrm{d}x
x+1 نىڭ ھەر بىر شەرتىنى 2x-1 نىڭ شەرتلىرىگە كۆپەيتىپ، تارقىتىش خاسلىقى قوللىنىڭ.
\int \left(2x^{2}+x-1\right)\left(x+9\right)\mathrm{d}x
-x بىلەن 2x نى بىرىكتۈرۈپ x نى چىقىرىڭ.
\int 2x^{3}+18x^{2}+x^{2}+9x-x-9\mathrm{d}x
2x^{2}+x-1 نىڭ ھەر بىر شەرتىنى x+9 نىڭ شەرتلىرىگە كۆپەيتىپ، تارقىتىش خاسلىقى قوللىنىڭ.
\int 2x^{3}+19x^{2}+9x-x-9\mathrm{d}x
18x^{2} بىلەن x^{2} نى بىرىكتۈرۈپ 19x^{2} نى چىقىرىڭ.
\int 2x^{3}+19x^{2}+8x-9\mathrm{d}x
9x بىلەن -x نى بىرىكتۈرۈپ 8x نى چىقىرىڭ.
\int 2x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 8x\mathrm{d}x+\int -9\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
2\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
\frac{x^{4}}{2}+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{3}\mathrm{d}x⁩ نى ⁦\frac{x^{4}}{4}⁩ بىلەن ئالماشتۇرۇڭ. 2 نى \frac{x^{4}}{4} كە كۆپەيتىڭ.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+8\int x\mathrm{d}x+\int -9\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{2}\mathrm{d}x⁩ نى ⁦\frac{x^{3}}{3}⁩ بىلەن ئالماشتۇرۇڭ. 19 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}+\int -9\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x\mathrm{d}x⁩ نى ⁦\frac{x^{2}}{2}⁩ بىلەن ئالماشتۇرۇڭ. 8 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x
ئادەتتىكى ئىنتېگراللار قائىدىسى ⁦\int a\mathrm{d}x=ax⁩ جەدۋىلى ئارقىلىق ⁦-9⁩ نىڭ ئىنتېگرالىنى تېپىڭ.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x+С
ئەگەر ⁦F\left(x\right)⁩ بۇ ⁦f\left(x\right)⁩ نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن ⁦f\left(x\right)⁩ نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى ⁦F\left(x\right)+C⁩ تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى ⁦C\in \mathrm{R}⁩ نى قوشۇڭ.