c نى يېشىش
\left\{\begin{matrix}c=\frac{3^{\frac{4}{3}}}{9t^{\frac{5}{3}}}+\frac{4С}{9t^{3}}\text{, }&t\neq 0\\c\in \mathrm{R}\text{, }&С=0\text{ and }t=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{\frac{4}{2}}tc
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 4 گە كۆپەيتىڭ.
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{2}tc
4 نى 2 گە بۆلۈپ 2 نى چىقىرىڭ.
4\int \sqrt[3]{3t}\mathrm{d}t=3^{2}t^{2}tc
\left(3t\right)^{2} نى يېيىڭ.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{2}tc
3 نىڭ 2-دەرىجىسىنى ھېسابلاپ 9 نى چىقىرىڭ.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{3}c
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 2 بىلەن 1 نى قوشۇپ، 3 نى چىقىرىڭ.
9t^{3}c=4\int \sqrt[3]{3t}\mathrm{d}t
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
9t^{3}c=4\sqrt[3]{3}t^{\frac{4}{3}}+4С
تەڭلىمە ئۆلچەملىك بولدى.
\frac{9t^{3}c}{9t^{3}}=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
ھەر ئىككى تەرەپنى 9t^{3} گە بۆلۈڭ.
c=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
9t^{3} گە بۆلگەندە 9t^{3} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
c=\frac{4\left(\frac{\left(3t\right)^{\frac{4}{3}}}{3}+С\right)}{9t^{3}}
\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С نى 9t^{3} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}