ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. x نى پارچىلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int x^{2}+2x+1-4x\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+1\right)^{2} نى يېيىڭ.
\int x^{2}-2x+1\mathrm{d}x
2x بىلەن -4x نى بىرىكتۈرۈپ -2x نى چىقىرىڭ.
\int x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
\frac{x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{2}\mathrm{d}x⁩ نى ⁦\frac{x^{3}}{3}⁩ بىلەن ئالماشتۇرۇڭ.
\frac{x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x\mathrm{d}x⁩ نى ⁦\frac{x^{2}}{2}⁩ بىلەن ئالماشتۇرۇڭ. -2 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
\frac{x^{3}}{3}-x^{2}+x
ئادەتتىكى ئىنتېگراللار قائىدىسى ⁦\int a\mathrm{d}x=ax⁩ جەدۋىلى ئارقىلىق ⁦1⁩ نىڭ ئىنتېگرالىنى تېپىڭ.
\frac{x^{3}}{3}-x^{2}+x+С
ئەگەر ⁦F\left(x\right)⁩ بۇ ⁦f\left(x\right)⁩ نىڭ بىر ئېنىقسىز ئىنتېگرالى بولسا، ئاندىن ⁦f\left(x\right)⁩ نىڭ بارلىق ئېنىقسىز ئىنتېگراللىرىنىڭ توپلىمى ⁦F\left(x\right)+C⁩ تەرىپىدىن بېرىلىدۇ. شۇنىڭ ئۈچۈن، نەتىجىگە ئىنتېگراسىيەنىڭ كونستانتى ⁦C\in \mathrm{R}⁩ نى قوشۇڭ.