ھېسابلاش
4\sqrt{2}+8\approx 13.656854249
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{8}{2-\sqrt{2}}
4 نىڭ كىۋادرات يىلتىزىنى ھېسابلاپ، 2 نى چىقىرىڭ.
\frac{8\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}
\frac{8}{2-\sqrt{2}} نىڭ سۈرەت ۋە مەخرەجلىرىنى 2+\sqrt{2} گە كۆپەيتىپ، مەخرەجنى راتسىيوناللاشتۇرۇڭ.
\frac{8\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right) نى ئويلىشىپ كۆرۈڭ. كۆپەيتىشنى تۆۋەندىكى قائىدە ئارقىلىق كىۋادرات ئايرىمىغا ئايلاندۇرۇشقا بولىدۇ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(2+\sqrt{2}\right)}{4-2}
2 نىڭ كىۋادراتىنى تېپىڭ. \sqrt{2} نىڭ كىۋادراتىنى تېپىڭ.
\frac{8\left(2+\sqrt{2}\right)}{2}
4 دىن 2 نى ئېلىپ 2 نى چىقىرىڭ.
4\left(2+\sqrt{2}\right)
8\left(2+\sqrt{2}\right) نى 2 گە بۆلۈپ 4\left(2+\sqrt{2}\right) نى چىقىرىڭ.
8+4\sqrt{2}
تارقىتىش قانۇنى بويىچە 4 نى 2+\sqrt{2} گە كۆپەيتىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}