ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. y نى پارچىلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{y^{2}}{y^{7}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 2 بىلەن 0 نى قوشۇپ، 2 نى چىقىرىڭ.
\frac{1}{y^{5}}
y^{7} نى y^{2}y^{5} شەكلىدە قايتا يېزىڭ. y^{2} نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{2}}{y^{7}})
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 2 بىلەن 0 نى قوشۇپ، 2 نى چىقىرىڭ.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{5}})
y^{7} نى y^{2}y^{5} شەكلىدە قايتا يېزىڭ. y^{2} نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
-\left(y^{5}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{5})
ئەگەر F ئوخشىمايدىغان ئىككى دىففېرېنسىيال فۇنكسىيە f\left(u\right) ۋە u=g\left(x\right) دىن تۈزۈلگەن بولسا، ئۇنداقتا ئەگەر F\left(x\right)=f\left(g\left(x\right)\right) بولسا، F نىڭ ھاسىلىسى ئايرىم-ئايرىم ھالدا u نى g ۋە x غا كۆپەيتكەندىكى f نىڭ ھاسىلىسىدۇر، يەنى \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) دۇر.
-\left(y^{5}\right)^{-2}\times 5y^{5-1}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
-5y^{4}\left(y^{5}\right)^{-2}
ئاددىيلاشتۇرۇڭ.