ھېسابلاش
144
كۆپەيتكۈچى
2^{4}\times 3^{2}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{3^{2}\times 2^{-3}\times \left(\frac{1}{3}\right)^{3}\times \left(\frac{1}{4}\right)^{-2}}{6^{-3}}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. -1 بىلەن 3 نى كۆپەيتىپ، -3 نى تېپىڭ.
\frac{9\times 2^{-3}\times \left(\frac{1}{3}\right)^{3}\times \left(\frac{1}{4}\right)^{-2}}{6^{-3}}
3 نىڭ 2-دەرىجىسىنى ھېسابلاپ 9 نى چىقىرىڭ.
\frac{9\times \frac{1}{8}\times \left(\frac{1}{3}\right)^{3}\times \left(\frac{1}{4}\right)^{-2}}{6^{-3}}
2 نىڭ -3-دەرىجىسىنى ھېسابلاپ \frac{1}{8} نى چىقىرىڭ.
\frac{\frac{9}{8}\times \left(\frac{1}{3}\right)^{3}\times \left(\frac{1}{4}\right)^{-2}}{6^{-3}}
9 گە \frac{1}{8} نى كۆپەيتىپ \frac{9}{8} نى چىقىرىڭ.
\frac{\frac{9}{8}\times \frac{1}{27}\times \left(\frac{1}{4}\right)^{-2}}{6^{-3}}
\frac{1}{3} نىڭ 3-دەرىجىسىنى ھېسابلاپ \frac{1}{27} نى چىقىرىڭ.
\frac{\frac{1}{24}\times \left(\frac{1}{4}\right)^{-2}}{6^{-3}}
\frac{9}{8} گە \frac{1}{27} نى كۆپەيتىپ \frac{1}{24} نى چىقىرىڭ.
\frac{\frac{1}{24}\times 16}{6^{-3}}
\frac{1}{4} نىڭ -2-دەرىجىسىنى ھېسابلاپ 16 نى چىقىرىڭ.
\frac{\frac{2}{3}}{6^{-3}}
\frac{1}{24} گە 16 نى كۆپەيتىپ \frac{2}{3} نى چىقىرىڭ.
\frac{\frac{2}{3}}{\frac{1}{216}}
6 نىڭ -3-دەرىجىسىنى ھېسابلاپ \frac{1}{216} نى چىقىرىڭ.
\frac{2}{3}\times 216
\frac{2}{3} نى \frac{1}{216} نىڭ ئەكس سانىغا كۆپەيتىش ئارقىلىق \frac{2}{3} نى \frac{1}{216} گە بۆلۈڭ.
144
\frac{2}{3} گە 216 نى كۆپەيتىپ 144 نى چىقىرىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}