\frac{ \left( 5+5+ \left( n-1 \right) d \right) n }{ 2 } =390
d نى يېشىش
d=-\frac{10\left(n-78\right)}{n\left(n-1\right)}
n\neq 1\text{ and }n\neq 0
n نى يېشىش
\left\{\begin{matrix}n=\frac{\sqrt{d^{2}+3100d+100}+d-10}{2d}\text{; }n=\frac{-\sqrt{d^{2}+3100d+100}+d-10}{2d}\text{, }&d\leq -20\sqrt{6006}-1550\text{ or }\left(d\neq 0\text{ and }d\geq 20\sqrt{6006}-1550\right)\\n=78\text{, }&d=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(5+5+\left(n-1\right)d\right)n=390\times 2
ھەر ئىككى تەرەپنى 2 گە كۆپەيتىڭ.
\left(10+\left(n-1\right)d\right)n=390\times 2
5 گە 5 نى قوشۇپ 10 نى چىقىرىڭ.
\left(10+nd-d\right)n=390\times 2
تارقىتىش قانۇنى بويىچە n-1 نى d گە كۆپەيتىڭ.
10n+dn^{2}-dn=390\times 2
تارقىتىش قانۇنى بويىچە 10+nd-d نى n گە كۆپەيتىڭ.
10n+dn^{2}-dn=780
390 گە 2 نى كۆپەيتىپ 780 نى چىقىرىڭ.
dn^{2}-dn=780-10n
ھەر ئىككى تەرەپتىن 10n نى ئېلىڭ.
\left(n^{2}-n\right)d=780-10n
d نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(n^{2}-n\right)d}{n^{2}-n}=\frac{780-10n}{n^{2}-n}
ھەر ئىككى تەرەپنى n^{2}-n گە بۆلۈڭ.
d=\frac{780-10n}{n^{2}-n}
n^{2}-n گە بۆلگەندە n^{2}-n گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
d=\frac{10\left(78-n\right)}{n\left(n-1\right)}
780-10n نى n^{2}-n كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}