ھېسابلاش
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
w.r.t. x نى پارچىلاش
\frac{60+12x-x^{2}}{x^{4}+16x^{3}+88x^{2}+192x+144}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)}
x^{2}+10x+24 نى ئاجرىتىڭ. x^{2}+6x+8 نى ئاجرىتىڭ.
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(x+4\right)\left(x+6\right) بىلەن \left(x+2\right)\left(x+4\right) نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x+2\right)\left(x+4\right)\left(x+6\right) دۇر. \frac{x}{\left(x+4\right)\left(x+6\right)} نى \frac{x+2}{x+2} كە كۆپەيتىڭ. \frac{4}{\left(x+2\right)\left(x+4\right)} نى \frac{x+6}{x+6} كە كۆپەيتىڭ.
\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} بىلەن \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x\left(x+2\right)-4\left(x+6\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x^{2}+2x-4x-24 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} دە كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
x+4 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{x-6}{x^{2}+8x+12}
\left(x+2\right)\left(x+6\right) نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)})
x^{2}+10x+24 نى ئاجرىتىڭ. x^{2}+6x+8 نى ئاجرىتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(x+4\right)\left(x+6\right) بىلەن \left(x+2\right)\left(x+4\right) نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x+2\right)\left(x+4\right)\left(x+6\right) دۇر. \frac{x}{\left(x+4\right)\left(x+6\right)} نى \frac{x+2}{x+2} كە كۆپەيتىڭ. \frac{4}{\left(x+2\right)\left(x+4\right)} نى \frac{x+6}{x+6} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} بىلەن \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x\left(x+2\right)-4\left(x+6\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x^{2}+2x-4x-24 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} دە كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{\left(x+2\right)\left(x+6\right)})
x+4 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{x^{2}+8x+12})
تارقىتىش قانۇنى بويىچە x+2 نى x+6 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(x^{2}+8x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-6)-\left(x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+8x^{1}+12)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(x^{2}+8x^{1}+12\right)x^{1-1}-\left(x^{1}-6\right)\left(2x^{2-1}+8x^{1-1}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(x^{2}+8x^{1}+12\right)x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
x^{2}+8x^{1}+12 نى x^{0} كە كۆپەيتىڭ.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\times 8x^{0}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
x^{1}-6 نى 2x^{1}+8x^{0} كە كۆپەيتىڭ.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{1+1}+8x^{1}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{2}+8x^{1}-12x^{1}-48x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{-x^{2}+12x^{1}+60x^{0}}{\left(x^{2}+8x^{1}+12\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{-x^{2}+12x+60x^{0}}{\left(x^{2}+8x+12\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
\frac{-x^{2}+12x+60\times 1}{\left(x^{2}+8x+12\right)^{2}}
0 دىن باشقا ھەرقانداق ئەزا t ئۈچۈن t^{0}=1.
\frac{-x^{2}+12x+60}{\left(x^{2}+8x+12\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t\times 1=t ۋە 1t=t.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}