x نى يېشىش
x=-\frac{4}{5}=-0.8
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x=5x+5x^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5 گە كۆپەيتىڭ.
x-5x=5x^{2}
ھەر ئىككى تەرەپتىن 5x نى ئېلىڭ.
-4x=5x^{2}
x بىلەن -5x نى بىرىكتۈرۈپ -4x نى چىقىرىڭ.
-4x-5x^{2}=0
ھەر ئىككى تەرەپتىن 5x^{2} نى ئېلىڭ.
x\left(-4-5x\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=-\frac{4}{5}
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن -4-5x=0 نى يېشىڭ.
x=5x+5x^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5 گە كۆپەيتىڭ.
x-5x=5x^{2}
ھەر ئىككى تەرەپتىن 5x نى ئېلىڭ.
-4x=5x^{2}
x بىلەن -5x نى بىرىكتۈرۈپ -4x نى چىقىرىڭ.
-4x-5x^{2}=0
ھەر ئىككى تەرەپتىن 5x^{2} نى ئېلىڭ.
-5x^{2}-4x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-5\right)}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا -5 نى a گە، -4 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-4\right)±4}{2\left(-5\right)}
\left(-4\right)^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{4±4}{2\left(-5\right)}
-4 نىڭ قارشىسى 4 دۇر.
x=\frac{4±4}{-10}
2 نى -5 كە كۆپەيتىڭ.
x=\frac{8}{-10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{4±4}{-10} نى يېشىڭ. 4 نى 4 گە قوشۇڭ.
x=-\frac{4}{5}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{8}{-10} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{0}{-10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{4±4}{-10} نى يېشىڭ. 4 دىن 4 نى ئېلىڭ.
x=0
0 نى -10 كە بۆلۈڭ.
x=-\frac{4}{5} x=0
تەڭلىمە يېشىلدى.
x=5x+5x^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5 گە كۆپەيتىڭ.
x-5x=5x^{2}
ھەر ئىككى تەرەپتىن 5x نى ئېلىڭ.
-4x=5x^{2}
x بىلەن -5x نى بىرىكتۈرۈپ -4x نى چىقىرىڭ.
-4x-5x^{2}=0
ھەر ئىككى تەرەپتىن 5x^{2} نى ئېلىڭ.
-5x^{2}-4x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{-5x^{2}-4x}{-5}=\frac{0}{-5}
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
x^{2}+\left(-\frac{4}{-5}\right)x=\frac{0}{-5}
-5 گە بۆلگەندە -5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{4}{5}x=\frac{0}{-5}
-4 نى -5 كە بۆلۈڭ.
x^{2}+\frac{4}{5}x=0
0 نى -5 كە بۆلۈڭ.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=\left(\frac{2}{5}\right)^{2}
\frac{4}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{2}{5} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{2}{5} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{4}{25}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{2}{5} نىڭ كىۋادراتىنى تېپىڭ.
\left(x+\frac{2}{5}\right)^{2}=\frac{4}{25}
كۆپەيتكۈچى x^{2}+\frac{4}{5}x+\frac{4}{25}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{2}{5}=\frac{2}{5} x+\frac{2}{5}=-\frac{2}{5}
ئاددىيلاشتۇرۇڭ.
x=0 x=-\frac{4}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{2}{5} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}