ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x=5y
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 20 گە كۆپەيتىڭ.
x=\frac{1}{4}\times 5y
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{5}{4}y
\frac{1}{4} نى 5y كە كۆپەيتىڭ.
-\frac{5}{4}y+y=-3
يەنە بىر تەڭلىمە -x+y=-3 دىكى x نىڭ ئورنىغا \frac{5y}{4} نى ئالماشتۇرۇڭ.
-\frac{1}{4}y=-3
-\frac{5y}{4} نى y گە قوشۇڭ.
y=12
ھەر ئىككى تەرەپنى -4 گە كۆپەيتىڭ.
x=\frac{5}{4}\times 12
x=\frac{5}{4}y دە 12 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=15
\frac{5}{4} نى 12 كە كۆپەيتىڭ.
x=15,y=12
سىستېما ھەل قىلىندى.
4x=5y
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 20 گە كۆپەيتىڭ.
4x-5y=0
ھەر ئىككى تەرەپتىن 5y نى ئېلىڭ.
y=x-3
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3 گە كۆپەيتىڭ.
y-x=-3
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
4x-5y=0,-x+y=-3
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\left(-1\right)\right)}&-\frac{-5}{4-\left(-5\left(-1\right)\right)}\\-\frac{-1}{4-\left(-5\left(-1\right)\right)}&\frac{4}{4-\left(-5\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-5\\-1&-4\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\left(-3\right)\\-4\left(-3\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\12\end{matrix}\right)
ھېسابلاڭ.
x=15,y=12
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x=5y
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 20 گە كۆپەيتىڭ.
4x-5y=0
ھەر ئىككى تەرەپتىن 5y نى ئېلىڭ.
y=x-3
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3 گە كۆپەيتىڭ.
y-x=-3
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
4x-5y=0,-x+y=-3
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-4x-\left(-5y\right)=0,4\left(-1\right)x+4y=4\left(-3\right)
4x بىلەن -x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
-4x+5y=0,-4x+4y=-12
ئاددىيلاشتۇرۇڭ.
-4x+4x+5y-4y=12
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -4x+5y=0 دىن -4x+4y=-12 نى ئېلىڭ.
5y-4y=12
-4x نى 4x گە قوشۇڭ. -4x بىلەن 4x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
y=12
5y نى -4y گە قوشۇڭ.
-x+12=-3
-x+y=-3 دە 12 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-x=-15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 12 نى ئېلىڭ.
x=15
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=15,y=12
سىستېما ھەل قىلىندى.