x، y نى يېشىش
x=6
y=8
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4x+3y=48
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 12 گە كۆپەيتىڭ.
2x-y=4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 2,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 4 گە كۆپەيتىڭ.
4x+3y=48,2x-y=4
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x+3y=48
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=-3y+48
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{4}\left(-3y+48\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{3}{4}y+12
\frac{1}{4} نى -3y+48 كە كۆپەيتىڭ.
2\left(-\frac{3}{4}y+12\right)-y=4
يەنە بىر تەڭلىمە 2x-y=4 دىكى x نىڭ ئورنىغا -\frac{3y}{4}+12 نى ئالماشتۇرۇڭ.
-\frac{3}{2}y+24-y=4
2 نى -\frac{3y}{4}+12 كە كۆپەيتىڭ.
-\frac{5}{2}y+24=4
-\frac{3y}{2} نى -y گە قوشۇڭ.
-\frac{5}{2}y=-20
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 24 نى ئېلىڭ.
y=8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{5}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{4}\times 8+12
x=-\frac{3}{4}y+12 دە 8 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-6+12
-\frac{3}{4} نى 8 كە كۆپەيتىڭ.
x=6
12 نى -6 گە قوشۇڭ.
x=6,y=8
سىستېما ھەل قىلىندى.
4x+3y=48
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 12 گە كۆپەيتىڭ.
2x-y=4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 2,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 4 گە كۆپەيتىڭ.
4x+3y=48,2x-y=4
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\4\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}48\\4\end{matrix}\right)
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}48\\4\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}48\\4\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-3\times 2}&-\frac{3}{4\left(-1\right)-3\times 2}\\-\frac{2}{4\left(-1\right)-3\times 2}&\frac{4}{4\left(-1\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}48\\4\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{3}{10}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}48\\4\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 48+\frac{3}{10}\times 4\\\frac{1}{5}\times 48-\frac{2}{5}\times 4\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
ھېسابلاڭ.
x=6,y=8
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x+3y=48
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 12 گە كۆپەيتىڭ.
2x-y=4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 2,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 4 گە كۆپەيتىڭ.
4x+3y=48,2x-y=4
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 4x+2\times 3y=2\times 48,4\times 2x+4\left(-1\right)y=4\times 4
4x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
8x+6y=96,8x-4y=16
ئاددىيلاشتۇرۇڭ.
8x-8x+6y+4y=96-16
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 8x+6y=96 دىن 8x-4y=16 نى ئېلىڭ.
6y+4y=96-16
8x نى -8x گە قوشۇڭ. 8x بىلەن -8x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
10y=96-16
6y نى 4y گە قوشۇڭ.
10y=80
96 نى -16 گە قوشۇڭ.
y=8
ھەر ئىككى تەرەپنى 10 گە بۆلۈڭ.
2x-8=4
2x-y=4 دە 8 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x=12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8 نى قوشۇڭ.
x=6
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=6,y=8
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}