ھېسابلاش
a^{4}+a^{3}+a^{2}+2
w.r.t. a نى پارچىلاش
a\left(4a^{2}+3a+2\right)
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. a-1 بىلەن a+1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(a-1\right)\left(a+1\right) دۇر. \frac{a^{5}}{a-1} نى \frac{a+1}{a+1} كە كۆپەيتىڭ. \frac{a^{2}}{a+1} نى \frac{a-1}{a-1} كە كۆپەيتىڭ.
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} بىلەن \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
a^{5}\left(a+1\right)-a^{2}\left(a-1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(a-1\right)\left(a+1\right) بىلەن a-1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(a-1\right)\left(a+1\right) دۇر. \frac{1}{a-1} نى \frac{a+1}{a+1} كە كۆپەيتىڭ.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} بىلەن \frac{a+1}{\left(a-1\right)\left(a+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)} دە كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
a-1 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} بىلەن \frac{1}{a+1} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1} دە كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
a+1 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
a^{4}+a^{3}+a^{2}+2
ئىپادىنى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. a-1 بىلەن a+1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(a-1\right)\left(a+1\right) دۇر. \frac{a^{5}}{a-1} نى \frac{a+1}{a+1} كە كۆپەيتىڭ. \frac{a^{2}}{a+1} نى \frac{a-1}{a-1} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} بىلەن \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
a^{5}\left(a+1\right)-a^{2}\left(a-1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(a-1\right)\left(a+1\right) بىلەن a-1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(a-1\right)\left(a+1\right) دۇر. \frac{1}{a-1} نى \frac{a+1}{a+1} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} بىلەن \frac{a+1}{\left(a-1\right)\left(a+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)} دە كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
a-1 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} بىلەن \frac{1}{a+1} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1} دە كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
a+1 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
ئىپادىنى يېيىڭ.
4a^{4-1}+3a^{3-1}+2a^{2-1}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
4a^{3}+3a^{3-1}+2a^{2-1}
4 دىن 1 نى ئېلىڭ.
4a^{3}+3a^{2}+2a^{2-1}
3 دىن 1 نى ئېلىڭ.
4a^{3}+3a^{2}+2a^{1}
2 دىن 1 نى ئېلىڭ.
4a^{3}+3a^{2}+2a
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}