ھېسابلاش
\frac{a^{4}-b^{4}}{36ab^{2}}
يېيىش
-\frac{b^{4}-a^{4}}{36ab^{2}}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{a+b}{6} نى \frac{a-b}{2a} گە كۆپەيتىڭ.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} نى \frac{a^{2}+b^{2}}{3b^{2}} گە كۆپەيتىڭ.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
6 گە 2 نى كۆپەيتىپ 12 نى چىقىرىڭ.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
12 گە 3 نى كۆپەيتىپ 36 نى چىقىرىڭ.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
تارقىتىش قانۇنى بويىچە a+b نى a-b گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right) نى ئويلىشىپ كۆرۈڭ. كۆپەيتىشنى تۆۋەندىكى قائىدە ئارقىلىق كىۋادرات ئايرىمىغا ئايلاندۇرۇشقا بولىدۇ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\frac{a^{4}-b^{4}}{36ab^{2}}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{a+b}{6} نى \frac{a-b}{2a} گە كۆپەيتىڭ.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} نى \frac{a^{2}+b^{2}}{3b^{2}} گە كۆپەيتىڭ.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
6 گە 2 نى كۆپەيتىپ 12 نى چىقىرىڭ.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
12 گە 3 نى كۆپەيتىپ 36 نى چىقىرىڭ.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
تارقىتىش قانۇنى بويىچە a+b نى a-b گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right) نى ئويلىشىپ كۆرۈڭ. كۆپەيتىشنى تۆۋەندىكى قائىدە ئارقىلىق كىۋادرات ئايرىمىغا ئايلاندۇرۇشقا بولىدۇ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\frac{a^{4}-b^{4}}{36ab^{2}}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}