A نى يېشىش
A=\pi r^{2}
r نى يېشىش (complex solution)
r=-\sqrt{\frac{A}{\pi }}
r=\sqrt{\frac{A}{\pi }}
r نى يېشىش
r=\sqrt{\frac{A}{\pi }}
r=-\sqrt{\frac{A}{\pi }}\text{, }A\geq 0
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{A}{\pi }=r^{2}
\pi ۋە \pi نى يېيىشتۈرۈڭ.
\frac{1}{\pi }A=r^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\frac{1}{\pi }A\pi }{1}=\frac{r^{2}\pi }{1}
ھەر ئىككى تەرەپنى \pi ^{-1} گە بۆلۈڭ.
A=\frac{r^{2}\pi }{1}
\pi ^{-1} گە بۆلگەندە \pi ^{-1} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
A=\pi r^{2}
r^{2} نى \pi ^{-1} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}