ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. y نى پارچىلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{8y}{6y\left(-3y+2\right)}
كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{4}{3\left(-3y+2\right)}
2y نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{4}{-9y+6}
ئىپادىنى يېيىڭ.
\frac{\left(12y^{1}-18y^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(8y^{1})-8y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(12y^{1}-18y^{2})}{\left(12y^{1}-18y^{2}\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{1-1}-8y^{1}\left(12y^{1-1}+2\left(-18\right)y^{2-1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
12y^{1}-18y^{2} نى 8y^{0} كە كۆپەيتىڭ.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-\left(8y^{1}\times 12y^{0}+8y^{1}\left(-36\right)y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
8y^{1} نى 12y^{0}-36y^{1} كە كۆپەيتىڭ.
\frac{12\times 8y^{1}-18\times 8y^{2}-\left(8\times 12y^{1}+8\left(-36\right)y^{1+1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{96y^{1}-144y^{2}-\left(96y^{1}-288y^{2}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{144y^{2}}{\left(12y^{1}-18y^{2}\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{144y^{2}}{\left(12y-18y^{2}\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.