ھېسابلاش
\frac{x+7}{x\left(x+1\right)}
w.r.t. x نى پارچىلاش
-\frac{x^{2}+14x+7}{\left(x\left(x+1\right)\right)^{2}}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. x بىلەن x+1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى x\left(x+1\right) دۇر. \frac{7}{x} نى \frac{x+1}{x+1} كە كۆپەيتىڭ. \frac{6}{x+1} نى \frac{x}{x} كە كۆپەيتىڭ.
\frac{7\left(x+1\right)-6x}{x\left(x+1\right)}
\frac{7\left(x+1\right)}{x\left(x+1\right)} بىلەن \frac{6x}{x\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{7x+7-6x}{x\left(x+1\right)}
7\left(x+1\right)-6x دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{x+7}{x\left(x+1\right)}
7x+7-6x دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{x+7}{x^{2}+x}
x\left(x+1\right) نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. x بىلەن x+1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى x\left(x+1\right) دۇر. \frac{7}{x} نى \frac{x+1}{x+1} كە كۆپەيتىڭ. \frac{6}{x+1} نى \frac{x}{x} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)-6x}{x\left(x+1\right)})
\frac{7\left(x+1\right)}{x\left(x+1\right)} بىلەن \frac{6x}{x\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+7-6x}{x\left(x+1\right)})
7\left(x+1\right)-6x دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x\left(x+1\right)})
7x+7-6x دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}+x})
تارقىتىش قانۇنى بويىچە x نى x+1 گە كۆپەيتىڭ.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(x^{2}+x^{1}\right)x^{1-1}-\left(x^{1}+7\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(x^{2}+x^{1}\right)x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
x^{2}+x^{1} نى x^{0} كە كۆپەيتىڭ.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}\times 2x^{1}+x^{1}x^{0}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
x^{1}+7 نى 2x^{1}+x^{0} كە كۆپەيتىڭ.
\frac{x^{2}+x^{1}-\left(2x^{1+1}+x^{1}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{x^{2}+x^{1}-\left(2x^{2}+x^{1}+14x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{-x^{2}-14x^{1}-7x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{-x^{2}-14x-7x^{0}}{\left(x^{2}+x\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
\frac{-x^{2}-14x-7}{\left(x^{2}+x\right)^{2}}
0 دىن باشقا ھەرقانداق ئەزا t ئۈچۈن t^{0}=1.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}