ھېسابلاش
\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)}
w.r.t. r نى پارچىلاش
-\frac{260r^{2}+140r+407}{\left(\left(5r-2\right)\left(2r+5\right)\right)^{2}}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 2r+5 بىلەن 5r-2 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(5r-2\right)\left(2r+5\right) دۇر. \frac{4}{2r+5} نى \frac{5r-2}{5r-2} كە كۆپەيتىڭ. \frac{3}{5r-2} نى \frac{2r+5}{2r+5} كە كۆپەيتىڭ.
\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} بىلەن \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)}
4\left(5r-2\right)+3\left(2r+5\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)}
20r-8+6r+15 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{26r+7}{10r^{2}+21r-10}
\left(5r-2\right)\left(2r+5\right) نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 2r+5 بىلەن 5r-2 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(5r-2\right)\left(2r+5\right) دۇر. \frac{4}{2r+5} نى \frac{5r-2}{5r-2} كە كۆپەيتىڭ. \frac{3}{5r-2} نى \frac{2r+5}{2r+5} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} بىلەن \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)})
4\left(5r-2\right)+3\left(2r+5\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)})
20r-8+6r+15 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+25r-4r-10})
5r-2 نىڭ ھەر بىر شەرتىنى 2r+5 نىڭ شەرتلىرىگە كۆپەيتىپ، تارقىتىش خاسلىقى قوللىنىڭ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+21r-10})
25r بىلەن -4r نى بىرىكتۈرۈپ 21r نى چىقىرىڭ.
\frac{\left(10r^{2}+21r^{1}-10\right)\frac{\mathrm{d}}{\mathrm{d}r}(26r^{1}+7)-\left(26r^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}r}(10r^{2}+21r^{1}-10)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{1-1}-\left(26r^{1}+7\right)\left(2\times 10r^{2-1}+21r^{1-1}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
10r^{2}+21r^{1}-10 نى 26r^{0} كە كۆپەيتىڭ.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}\times 20r^{1}+26r^{1}\times 21r^{0}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
26r^{1}+7 نى 20r^{1}+21r^{0} كە كۆپەيتىڭ.
\frac{10\times 26r^{2}+21\times 26r^{1}-10\times 26r^{0}-\left(26\times 20r^{1+1}+26\times 21r^{1}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{260r^{2}+546r^{1}-260r^{0}-\left(520r^{2}+546r^{1}+140r^{1}+147r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{-260r^{2}-140r^{1}-407r^{0}}{\left(10r^{2}+21r^{1}-10\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{-260r^{2}-140r-407r^{0}}{\left(10r^{2}+21r-10\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
\frac{-260r^{2}-140r-407}{\left(10r^{2}+21r-10\right)^{2}}
0 دىن باشقا ھەرقانداق ئەزا t ئۈچۈن t^{0}=1.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}