ھېسابلاش
\frac{x-33}{\left(3-x\right)\left(x-1\right)}
w.r.t. x نى پارچىلاش
\frac{x^{2}-66x+129}{x^{4}-8x^{3}+22x^{2}-24x+9}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1}
4 گە 6 نى كۆپەيتىپ 24 نى چىقىرىڭ.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
x^{2}-4x+3 نى ئاجرىتىڭ.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(x-3\right)\left(x-1\right) بىلەن 3-x نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x-3\right)\left(x-1\right) دۇر. \frac{3}{3-x} نى \frac{-\left(x-1\right)}{-\left(x-1\right)} كە كۆپەيتىڭ.
\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
\frac{24}{\left(x-3\right)\left(x-1\right)} بىلەن \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
24-3\left(-1\right)\left(x-1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
24+3x-3 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(x-3\right)\left(x-1\right) بىلەن x-1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x-3\right)\left(x-1\right) دۇر. \frac{4}{x-1} نى \frac{x-3}{x-3} كە كۆپەيتىڭ.
\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
\frac{21+3x}{\left(x-3\right)\left(x-1\right)} بىلەن \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)}
21+3x-4\left(x-3\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{33-x}{\left(x-3\right)\left(x-1\right)}
21+3x-4x+12 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{33-x}{x^{2}-4x+3}
\left(x-3\right)\left(x-1\right) نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1})
4 گە 6 نى كۆپەيتىپ 24 نى چىقىرىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1})
x^{2}-4x+3 نى ئاجرىتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(x-3\right)\left(x-1\right) بىلەن 3-x نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x-3\right)\left(x-1\right) دۇر. \frac{3}{3-x} نى \frac{-\left(x-1\right)}{-\left(x-1\right)} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
\frac{24}{\left(x-3\right)\left(x-1\right)} بىلەن \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
24-3\left(-1\right)\left(x-1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
24+3x-3 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(x-3\right)\left(x-1\right) بىلەن x-1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x-3\right)\left(x-1\right) دۇر. \frac{4}{x-1} نى \frac{x-3}{x-3} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
\frac{21+3x}{\left(x-3\right)\left(x-1\right)} بىلەن \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)})
21+3x-4\left(x-3\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{\left(x-3\right)\left(x-1\right)})
21+3x-4x+12 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{x^{2}-4x+3})
تارقىتىش قانۇنى بويىچە x-3 نى x-1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(x^{2}-4x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+33)-\left(-x^{1}+33\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}+3)}{\left(x^{2}-4x^{1}+3\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{1-1}-\left(-x^{1}+33\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
x^{2}-4x^{1}+3 نى -x^{0} كە كۆپەيتىڭ.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-4\right)x^{0}+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
-x^{1}+33 نى 2x^{1}-4x^{0} كە كۆپەيتىڭ.
\frac{-x^{2}-4\left(-1\right)x^{1}+3\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-4x^{1}\right)+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{-x^{2}+4x^{1}-3x^{0}-\left(-2x^{2}+4x^{1}+66x^{1}-132x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{x^{2}-66x^{1}+129x^{0}}{\left(x^{2}-4x^{1}+3\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{x^{2}-66x+129x^{0}}{\left(x^{2}-4x+3\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
\frac{x^{2}-66x+129\times 1}{\left(x^{2}-4x+3\right)^{2}}
0 دىن باشقا ھەرقانداق ئەزا t ئۈچۈن t^{0}=1.
\frac{x^{2}-66x+129}{\left(x^{2}-4x+3\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t\times 1=t ۋە 1t=t.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}