x نى يېشىش
x = -\frac{29}{4} = -7\frac{1}{4} = -7.25
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{3}{4}\left(\frac{4}{3}\times \frac{1}{2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
تارقىتىش قانۇنى بويىچە \frac{4}{3} نى \frac{1}{2}x-\frac{1}{4} گە كۆپەيتىڭ.
\frac{3}{4}\left(\frac{4\times 1}{3\times 2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{4}{3} نى \frac{1}{2} گە كۆپەيتىڭ.
\frac{3}{4}\left(\frac{4}{6}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
كەسىر \frac{4\times 1}{3\times 2} دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{4}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4\left(-1\right)}{3\times 4}-8\right)=\frac{3}{2}x+1
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{4}{3} نى -\frac{1}{4} گە كۆپەيتىڭ.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1}{3}-8\right)=\frac{3}{2}x+1
4 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-8\right)=\frac{3}{2}x+1
\frac{-1}{3} دېگەن كەسىرنى مىنۇس بەلگىسىنى يېشىش ئارقىلىق -\frac{1}{3} شەكلىدە يېزىشقا بولىدۇ.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-\frac{24}{3}\right)=\frac{3}{2}x+1
8 نى ئاددىي كەسىر \frac{24}{3} گە ئايلاندۇرۇڭ.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1-24}{3}\right)=\frac{3}{2}x+1
-\frac{1}{3} بىلەن \frac{24}{3} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{3}{4}\left(\frac{2}{3}x-\frac{25}{3}\right)=\frac{3}{2}x+1
-1 دىن 24 نى ئېلىپ -25 نى چىقىرىڭ.
\frac{3}{4}\times \frac{2}{3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
تارقىتىش قانۇنى بويىچە \frac{3}{4} نى \frac{2}{3}x-\frac{25}{3} گە كۆپەيتىڭ.
\frac{3\times 2}{4\times 3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3}{4} نى \frac{2}{3} گە كۆپەيتىڭ.
\frac{2}{4}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
3 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{1}{2}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{2}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
\frac{1}{2}x+\frac{3\left(-25\right)}{4\times 3}=\frac{3}{2}x+1
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3}{4} نى -\frac{25}{3} گە كۆپەيتىڭ.
\frac{1}{2}x+\frac{-25}{4}=\frac{3}{2}x+1
3 نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{1}{2}x-\frac{25}{4}=\frac{3}{2}x+1
\frac{-25}{4} دېگەن كەسىرنى مىنۇس بەلگىسىنى يېشىش ئارقىلىق -\frac{25}{4} شەكلىدە يېزىشقا بولىدۇ.
\frac{1}{2}x-\frac{25}{4}-\frac{3}{2}x=1
ھەر ئىككى تەرەپتىن \frac{3}{2}x نى ئېلىڭ.
-x-\frac{25}{4}=1
\frac{1}{2}x بىلەن -\frac{3}{2}x نى بىرىكتۈرۈپ -x نى چىقىرىڭ.
-x=1+\frac{25}{4}
\frac{25}{4} نى ھەر ئىككى تەرەپكە قوشۇڭ.
-x=\frac{4}{4}+\frac{25}{4}
1 نى ئاددىي كەسىر \frac{4}{4} گە ئايلاندۇرۇڭ.
-x=\frac{4+25}{4}
\frac{4}{4} بىلەن \frac{25}{4} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
-x=\frac{29}{4}
4 گە 25 نى قوشۇپ 29 نى چىقىرىڭ.
x=-\frac{29}{4}
ھەر ئىككى تەرەپنى -1 گە كۆپەيتىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}