ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
ھەقىقىي قىسىم
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{\left(3+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
سۈرەت ۋە مەخرەجنى مەخرەج 1-i نىڭ مۇرەككەپ قوشمىقىغا كۆپەيتىڭ.
\frac{\left(3+2i\right)\left(1-i\right)}{1^{2}-i^{2}}
كۆپەيتىشنى تۆۋەندىكى قائىدە ئارقىلىق كىۋادرات ئايرىمىغا ئايلاندۇرۇشقا بولىدۇ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(1-i\right)}{2}
ئېنىقلىمىسى بويىچە i^{2} بولسا -1 دۇر. مەخرەجنى ھېسابلاڭ.
\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2}
3+2i ۋە 1-i دېگەن مۇرەككەپ سانلارنى ئىككى ئەزالىقنى كۆپەيتكەندەك كۆپەيتىڭ.
\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2}
ئېنىقلىمىسى بويىچە i^{2} بولسا -1 دۇر.
\frac{3-3i+2i+2}{2}
3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{3+2+\left(-3+2\right)i}{2}
3-3i+2i+2 دىكى ھەقىقىي ۋە مەۋھۇم قىسىمىنى بىرىكتۈرۈڭ.
\frac{5-i}{2}
3+2+\left(-3+2\right)i دە قوشۇش مەشغۇلاتى قىلىڭ.
\frac{5}{2}-\frac{1}{2}i
5-i نى 2 گە بۆلۈپ \frac{5}{2}-\frac{1}{2}i نى چىقىرىڭ.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
\frac{3+2i}{1+i} نىڭ سۈرەت ۋە مەخرەجلىرىنى مەخرەجنىڭ مۇرەككەپ قوشمىسى 1-i گە كۆپەيتىڭ.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{1^{2}-i^{2}})
كۆپەيتىشنى تۆۋەندىكى قائىدە ئارقىلىق كىۋادرات ئايرىمىغا ئايلاندۇرۇشقا بولىدۇ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(1-i\right)}{2})
ئېنىقلىمىسى بويىچە i^{2} بولسا -1 دۇر. مەخرەجنى ھېسابلاڭ.
Re(\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2})
3+2i ۋە 1-i دېگەن مۇرەككەپ سانلارنى ئىككى ئەزالىقنى كۆپەيتكەندەك كۆپەيتىڭ.
Re(\frac{3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2})
ئېنىقلىمىسى بويىچە i^{2} بولسا -1 دۇر.
Re(\frac{3-3i+2i+2}{2})
3\times 1+3\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
Re(\frac{3+2+\left(-3+2\right)i}{2})
3-3i+2i+2 دىكى ھەقىقىي ۋە مەۋھۇم قىسىمىنى بىرىكتۈرۈڭ.
Re(\frac{5-i}{2})
3+2+\left(-3+2\right)i دە قوشۇش مەشغۇلاتى قىلىڭ.
Re(\frac{5}{2}-\frac{1}{2}i)
5-i نى 2 گە بۆلۈپ \frac{5}{2}-\frac{1}{2}i نى چىقىرىڭ.
\frac{5}{2}
\frac{5}{2}-\frac{1}{2}i نىڭ ھەقىقىي قىسىمى \frac{5}{2} دۇر.