ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. a نى پارچىلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 2a+3 بىلەن 3-2a نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(-2a+3\right)\left(2a+3\right) دۇر. \frac{2}{2a+3} نى \frac{-2a+3}{-2a+3} كە كۆپەيتىڭ. \frac{1}{3-2a} نى \frac{2a+3}{2a+3} كە كۆپەيتىڭ.
\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}
\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} بىلەن \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)}
2\left(-2a+3\right)-\left(2a+3\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)}
-4a+6-2a-3 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{-6a+3}{-4a^{2}+9}
\left(-2a+3\right)\left(2a+3\right) نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 2a+3 بىلەن 3-2a نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(-2a+3\right)\left(2a+3\right) دۇر. \frac{2}{2a+3} نى \frac{-2a+3}{-2a+3} كە كۆپەيتىڭ. \frac{1}{3-2a} نى \frac{2a+3}{2a+3} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)})
\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} بىلەن \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)})
2\left(-2a+3\right)-\left(2a+3\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)})
-4a+6-2a-3 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}-6a+6a+9})
-2a+3 نىڭ ھەر بىر شەرتىنى 2a+3 نىڭ شەرتلىرىگە كۆپەيتىپ، تارقىتىش خاسلىقى قوللىنىڭ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}+9})
-6a بىلەن 6a نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\frac{\left(-4a^{2}+9\right)\frac{\mathrm{d}}{\mathrm{d}a}(-6a^{1}+3)-\left(-6a^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}a}(-4a^{2}+9)}{\left(-4a^{2}+9\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{1-1}-\left(-6a^{1}+3\right)\times 2\left(-4\right)a^{2-1}}{\left(-4a^{2}+9\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{0}-\left(-6a^{1}+3\right)\left(-8\right)a^{1}}{\left(-4a^{2}+9\right)^{2}}
ھېسابلاڭ.
\frac{-4a^{2}\left(-6\right)a^{0}+9\left(-6\right)a^{0}-\left(-6a^{1}\left(-8\right)a^{1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
تارقىتىش قانۇنى بويىچە يېيىڭ.
\frac{-4\left(-6\right)a^{2}+9\left(-6\right)a^{0}-\left(-6\left(-8\right)a^{1+1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{24a^{2}-54a^{0}-\left(48a^{2}-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
ھېسابلاڭ.
\frac{24a^{2}-54a^{0}-48a^{2}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
زۆرۈر بولمىغان تىرناقلارنى چىقىرىۋېتىڭ.
\frac{\left(24-48\right)a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{-24a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
24 دىن 48 نى ئېلىڭ.
\frac{-24a^{2}-54a^{0}-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
\frac{-24a^{2}-54-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
0 دىن باشقا ھەرقانداق ئەزا t ئۈچۈن t^{0}=1.