ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. x نى پارچىلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{1}{x+2}+\frac{\left(-x-2\right)\left(x+2\right)}{x+2}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. -x-2 نى \frac{x+2}{x+2} كە كۆپەيتىڭ.
\frac{1+\left(-x-2\right)\left(x+2\right)}{x+2}
\frac{1}{x+2} بىلەن \frac{\left(-x-2\right)\left(x+2\right)}{x+2} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{1-x^{2}-2x-2x-4}{x+2}
1+\left(-x-2\right)\left(x+2\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{-3-x^{2}-4x}{x+2}
1-x^{2}-2x-2x-4 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+2}+\frac{\left(-x-2\right)\left(x+2\right)}{x+2})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. -x-2 نى \frac{x+2}{x+2} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\left(-x-2\right)\left(x+2\right)}{x+2})
\frac{1}{x+2} بىلەن \frac{\left(-x-2\right)\left(x+2\right)}{x+2} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x^{2}-2x-2x-4}{x+2})
1+\left(-x-2\right)\left(x+2\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3-x^{2}-4x}{x+2})
1-x^{2}-2x-2x-4 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}-4x^{1}-3)-\left(-x^{2}-4x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(x^{1}+2\right)\left(2\left(-1\right)x^{2-1}-4x^{1-1}\right)-\left(-x^{2}-4x^{1}-3\right)x^{1-1}}{\left(x^{1}+2\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(x^{1}+2\right)\left(-2x^{1}-4x^{0}\right)-\left(-x^{2}-4x^{1}-3\right)x^{0}}{\left(x^{1}+2\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{x^{1}\left(-2\right)x^{1}+x^{1}\left(-4\right)x^{0}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}-4x^{1}-3\right)x^{0}}{\left(x^{1}+2\right)^{2}}
x^{1}+2 نى -2x^{1}-4x^{0} كە كۆپەيتىڭ.
\frac{x^{1}\left(-2\right)x^{1}+x^{1}\left(-4\right)x^{0}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}x^{0}-4x^{1}x^{0}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
-x^{2}-4x^{1}-3 نى x^{0} كە كۆپەيتىڭ.
\frac{-2x^{1+1}-4x^{1}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}-4x^{1}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{-2x^{2}-4x^{1}-4x^{1}-8x^{0}-\left(-x^{2}-4x^{1}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
ئاددىيلاشتۇرۇڭ.
\frac{-x^{2}-4x^{1}-5x^{0}}{\left(x^{1}+2\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{-x^{2}-4x-5x^{0}}{\left(x+2\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
\frac{-x^{2}-4x-5}{\left(x+2\right)^{2}}
0 دىن باشقا ھەرقانداق ئەزا t ئۈچۈن t^{0}=1.