w نى يېشىش
w=-7
w=5
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
35=w\left(w+2\right)
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار w قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى w,35 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 35w گە كۆپەيتىڭ.
35=w^{2}+2w
تارقىتىش قانۇنى بويىچە w نى w+2 گە كۆپەيتىڭ.
w^{2}+2w=35
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
w^{2}+2w-35=0
ھەر ئىككى تەرەپتىن 35 نى ئېلىڭ.
w=\frac{-2±\sqrt{2^{2}-4\left(-35\right)}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 2 نى b گە ۋە -35 نى c گە ئالماشتۇرۇڭ.
w=\frac{-2±\sqrt{4-4\left(-35\right)}}{2}
2 نىڭ كىۋادراتىنى تېپىڭ.
w=\frac{-2±\sqrt{4+140}}{2}
-4 نى -35 كە كۆپەيتىڭ.
w=\frac{-2±\sqrt{144}}{2}
4 نى 140 گە قوشۇڭ.
w=\frac{-2±12}{2}
144 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
w=\frac{10}{2}
± پىلۇس بولغاندىكى تەڭلىمە w=\frac{-2±12}{2} نى يېشىڭ. -2 نى 12 گە قوشۇڭ.
w=5
10 نى 2 كە بۆلۈڭ.
w=-\frac{14}{2}
± مىنۇس بولغاندىكى تەڭلىمە w=\frac{-2±12}{2} نى يېشىڭ. -2 دىن 12 نى ئېلىڭ.
w=-7
-14 نى 2 كە بۆلۈڭ.
w=5 w=-7
تەڭلىمە يېشىلدى.
35=w\left(w+2\right)
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار w قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى w,35 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 35w گە كۆپەيتىڭ.
35=w^{2}+2w
تارقىتىش قانۇنى بويىچە w نى w+2 گە كۆپەيتىڭ.
w^{2}+2w=35
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
w^{2}+2w+1^{2}=35+1^{2}
2، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، 1 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
w^{2}+2w+1=35+1
1 نىڭ كىۋادراتىنى تېپىڭ.
w^{2}+2w+1=36
35 نى 1 گە قوشۇڭ.
\left(w+1\right)^{2}=36
كۆپەيتكۈچى w^{2}+2w+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(w+1\right)^{2}}=\sqrt{36}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
w+1=6 w+1=-6
ئاددىيلاشتۇرۇڭ.
w=5 w=-7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}