ھېسابلاش
-\frac{5b^{3}}{3}
يېيىش
-\frac{5b^{3}}{3}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} ئارقىلىق \left(a-2b\right)^{3} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ئارقىلىق \left(a-2\right)^{2} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ئارقىلىق \left(a+2\right)^{2} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
تارقىتىش قانۇنى بويىچە a^{2}-4a+4 نى a^{2}+4a+4 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-8a^{2} بىلەن 4a^{2} نى بىرىكتۈرۈپ -4a^{2} نى چىقىرىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ئارقىلىق \left(2-a^{2}\right)^{2} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4-4a^{2}+a^{4} نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
16 دىن 4 نى ئېلىپ 12 نى چىقىرىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-4a^{2} بىلەن 4a^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{4} بىلەن -a^{4} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{36} گە 12 نى كۆپەيتىپ \frac{1}{3} نى چىقىرىڭ.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
تارقىتىش قانۇنى بويىچە \frac{1}{3} نى a^{3}-6a^{2}b+12ab^{2}-8b^{3} گە كۆپەيتىڭ.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
تارقىتىش قانۇنى بويىچە ab نى \frac{11}{3}b-a گە كۆپەيتىڭ.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}ab^{2}-ba^{2} نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4ab^{2} بىلەن -\frac{11}{3}ab^{2} نى بىرىكتۈرۈپ \frac{1}{3}ab^{2} نى چىقىرىڭ.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-2a^{2}b بىلەن ba^{2} نى بىرىكتۈرۈپ -a^{2}b نى چىقىرىڭ.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
تارقىتىش قانۇنى بويىچە \frac{1}{3}a-b نى b^{2}+a^{2} گە كۆپەيتىڭ.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2} بىلەن -\frac{1}{3}ab^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
\frac{1}{3}a^{3} بىلەن -\frac{1}{3}a^{3} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
-\frac{8}{3}b^{3} بىلەن b^{3} نى بىرىكتۈرۈپ -\frac{5}{3}b^{3} نى چىقىرىڭ.
-\frac{5}{3}b^{3}
-a^{2}b بىلەن ba^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} ئارقىلىق \left(a-2b\right)^{3} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ئارقىلىق \left(a-2\right)^{2} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ئارقىلىق \left(a+2\right)^{2} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
تارقىتىش قانۇنى بويىچە a^{2}-4a+4 نى a^{2}+4a+4 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-8a^{2} بىلەن 4a^{2} نى بىرىكتۈرۈپ -4a^{2} نى چىقىرىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ئارقىلىق \left(2-a^{2}\right)^{2} نى يېيىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4-4a^{2}+a^{4} نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
16 دىن 4 نى ئېلىپ 12 نى چىقىرىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-4a^{2} بىلەن 4a^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{4} بىلەن -a^{4} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{36} گە 12 نى كۆپەيتىپ \frac{1}{3} نى چىقىرىڭ.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
تارقىتىش قانۇنى بويىچە \frac{1}{3} نى a^{3}-6a^{2}b+12ab^{2}-8b^{3} گە كۆپەيتىڭ.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
تارقىتىش قانۇنى بويىچە ab نى \frac{11}{3}b-a گە كۆپەيتىڭ.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}ab^{2}-ba^{2} نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4ab^{2} بىلەن -\frac{11}{3}ab^{2} نى بىرىكتۈرۈپ \frac{1}{3}ab^{2} نى چىقىرىڭ.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-2a^{2}b بىلەن ba^{2} نى بىرىكتۈرۈپ -a^{2}b نى چىقىرىڭ.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
تارقىتىش قانۇنى بويىچە \frac{1}{3}a-b نى b^{2}+a^{2} گە كۆپەيتىڭ.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} نىڭ قارشىسىنى تېپىش ئۈچۈن ھەر ئەزانىڭ قارشىسىنى تېپىڭ.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2} بىلەن -\frac{1}{3}ab^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
\frac{1}{3}a^{3} بىلەن -\frac{1}{3}a^{3} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
-\frac{8}{3}b^{3} بىلەن b^{3} نى بىرىكتۈرۈپ -\frac{5}{3}b^{3} نى چىقىرىڭ.
-\frac{5}{3}b^{3}
-a^{2}b بىلەن ba^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}