x نى يېشىش (complex solution)
x=\frac{5+\sqrt{231}i}{8}\approx 0.625+1.899835519i
x=\frac{-\sqrt{231}i+5}{8}\approx 0.625-1.899835519i
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\left(-\frac{5}{8}\right)^{2}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا \frac{1}{2} نى a گە، -\frac{5}{8} نى b گە ۋە 2 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{5}{8} نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-2\times 2}}{2\times \frac{1}{2}}
-4 نى \frac{1}{2} كە كۆپەيتىڭ.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4}}{2\times \frac{1}{2}}
-2 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{-\frac{231}{64}}}{2\times \frac{1}{2}}
\frac{25}{64} نى -4 گە قوشۇڭ.
x=\frac{-\left(-\frac{5}{8}\right)±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
-\frac{231}{64} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
-\frac{5}{8} نىڭ قارشىسى \frac{5}{8} دۇر.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1}
2 نى \frac{1}{2} كە كۆپەيتىڭ.
x=\frac{5+\sqrt{231}i}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} نى يېشىڭ. \frac{5}{8} نى \frac{i\sqrt{231}}{8} گە قوشۇڭ.
x=\frac{-\sqrt{231}i+5}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} نى يېشىڭ. \frac{5}{8} دىن \frac{i\sqrt{231}}{8} نى ئېلىڭ.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
تەڭلىمە يېشىلدى.
\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{1}{2}x^{2}-\frac{5}{8}x+2-2=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
\frac{1}{2}x^{2}-\frac{5}{8}x=-2
2 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{\frac{1}{2}x^{2}-\frac{5}{8}x}{\frac{1}{2}}=-\frac{2}{\frac{1}{2}}
ھەر ئىككى تەرەپنى 2 گە كۆپەيتىڭ.
x^{2}+\left(-\frac{\frac{5}{8}}{\frac{1}{2}}\right)x=-\frac{2}{\frac{1}{2}}
\frac{1}{2} گە بۆلگەندە \frac{1}{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{5}{4}x=-\frac{2}{\frac{1}{2}}
-\frac{5}{8} نى \frac{1}{2} نىڭ ئەكس سانىغا كۆپەيتىش ئارقىلىق -\frac{5}{8} نى \frac{1}{2} گە بۆلۈڭ.
x^{2}-\frac{5}{4}x=-4
-2 نى \frac{1}{2} نىڭ ئەكس سانىغا كۆپەيتىش ئارقىلىق -2 نى \frac{1}{2} گە بۆلۈڭ.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-4+\left(-\frac{5}{8}\right)^{2}
-\frac{5}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{5}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{5}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-4+\frac{25}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{5}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{231}{64}
-4 نى \frac{25}{64} گە قوشۇڭ.
\left(x-\frac{5}{8}\right)^{2}=-\frac{231}{64}
كۆپەيتكۈچى x^{2}-\frac{5}{4}x+\frac{25}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{231}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{5}{8}=\frac{\sqrt{231}i}{8} x-\frac{5}{8}=-\frac{\sqrt{231}i}{8}
ئاددىيلاشتۇرۇڭ.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{5}{8} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}