m نى يېشىش
m=-5
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{1}{2}\times 4m+\frac{1}{2}\times 8=\frac{1}{3}\left(3m-3\right)
تارقىتىش قانۇنى بويىچە \frac{1}{2} نى 4m+8 گە كۆپەيتىڭ.
\frac{4}{2}m+\frac{1}{2}\times 8=\frac{1}{3}\left(3m-3\right)
\frac{1}{2} گە 4 نى كۆپەيتىپ \frac{4}{2} نى چىقىرىڭ.
2m+\frac{1}{2}\times 8=\frac{1}{3}\left(3m-3\right)
4 نى 2 گە بۆلۈپ 2 نى چىقىرىڭ.
2m+\frac{8}{2}=\frac{1}{3}\left(3m-3\right)
\frac{1}{2} گە 8 نى كۆپەيتىپ \frac{8}{2} نى چىقىرىڭ.
2m+4=\frac{1}{3}\left(3m-3\right)
8 نى 2 گە بۆلۈپ 4 نى چىقىرىڭ.
2m+4=\frac{1}{3}\times 3m+\frac{1}{3}\left(-3\right)
تارقىتىش قانۇنى بويىچە \frac{1}{3} نى 3m-3 گە كۆپەيتىڭ.
2m+4=m+\frac{1}{3}\left(-3\right)
3 ۋە 3 نى يېيىشتۈرۈڭ.
2m+4=m+\frac{-3}{3}
\frac{1}{3} گە -3 نى كۆپەيتىپ \frac{-3}{3} نى چىقىرىڭ.
2m+4=m-1
-3 نى 3 گە بۆلۈپ -1 نى چىقىرىڭ.
2m+4-m=-1
ھەر ئىككى تەرەپتىن m نى ئېلىڭ.
m+4=-1
2m بىلەن -m نى بىرىكتۈرۈپ m نى چىقىرىڭ.
m=-1-4
ھەر ئىككى تەرەپتىن 4 نى ئېلىڭ.
m=-5
-1 دىن 4 نى ئېلىپ -5 نى چىقىرىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}