ئاساسىي مەزمۇنغا ئاتلاش
w.r.t. x نى پارچىلاش
Tick mark Image
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{3}\right)^{\frac{1}{4}}\left(y^{2}\right)^{\frac{1}{4}}}{\left(x^{-7}y^{-1}\right)^{-\frac{1}{2}}})
\left(x^{3}y^{2}\right)^{\frac{1}{4}} نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{\frac{3}{4}}\left(y^{2}\right)^{\frac{1}{4}}}{\left(x^{-7}y^{-1}\right)^{-\frac{1}{2}}})
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 3 بىلەن \frac{1}{4} نى كۆپەيتىپ، \frac{3}{4} نى تېپىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{\frac{3}{4}}y^{\frac{1}{2}}}{\left(x^{-7}y^{-1}\right)^{-\frac{1}{2}}})
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن \frac{1}{4} نى كۆپەيتىپ، \frac{1}{2} نى تېپىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{\frac{3}{4}}y^{\frac{1}{2}}}{\left(x^{-7}\right)^{-\frac{1}{2}}\left(y^{-1}\right)^{-\frac{1}{2}}})
\left(x^{-7}y^{-1}\right)^{-\frac{1}{2}} نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{\frac{3}{4}}y^{\frac{1}{2}}}{x^{\frac{7}{2}}\left(y^{-1}\right)^{-\frac{1}{2}}})
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. -7 بىلەن -\frac{1}{2} نى كۆپەيتىپ، \frac{7}{2} نى تېپىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{\frac{3}{4}}y^{\frac{1}{2}}}{x^{\frac{7}{2}}y^{\frac{1}{2}}})
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. -1 بىلەن -\frac{1}{2} نى كۆپەيتىپ، \frac{1}{2} نى تېپىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{\frac{11}{4}}})
\sqrt{y}x^{\frac{3}{4}} نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
-\left(x^{\frac{11}{4}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{11}{4}})
ئەگەر F ئوخشىمايدىغان ئىككى دىففېرېنسىيال فۇنكسىيە f\left(u\right) ۋە u=g\left(x\right) دىن تۈزۈلگەن بولسا، ئۇنداقتا ئەگەر F\left(x\right)=f\left(g\left(x\right)\right) بولسا، F نىڭ ھاسىلىسى ئايرىم-ئايرىم ھالدا u نى g ۋە x غا كۆپەيتكەندىكى f نىڭ ھاسىلىسىدۇر، يەنى \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) دۇر.
-\left(x^{\frac{11}{4}}\right)^{-2}\times \frac{11}{4}x^{\frac{11}{4}-1}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
-\frac{11}{4}x^{\frac{7}{4}}\left(x^{\frac{11}{4}}\right)^{-2}
ئاددىيلاشتۇرۇڭ.