ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
يېيىش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. x+2y بىلەن x-2y نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x-2y\right)\left(x+2y\right) دۇر. \frac{x-2y}{x+2y} نى \frac{x-2y}{x-2y} كە كۆپەيتىڭ. \frac{x+2y}{x-2y} نى \frac{x+2y}{x+2y} كە كۆپەيتىڭ.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} بىلەن \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 1 نى \frac{4xy}{4xy} كە كۆپەيتىڭ.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{4xy}{4xy} بىلەن \frac{x^{2}+4y^{2}}{4xy} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} نى \frac{4xy+x^{2}+4y^{2}}{4xy} گە كۆپەيتىڭ.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) نى يەككە ئاددىي كەسىر شەكلىدە ئىپادىلەڭ.
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} نى \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} نىڭ ئەكس سانىغا كۆپەيتىش ئارقىلىق \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} نى \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} گە بۆلۈڭ.
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
2xy نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{1}{x\left(x-2y\right)}
2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right) نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{1}{x^{2}-2xy}
ئىپادىنى يېيىڭ.
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. x+2y بىلەن x-2y نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x-2y\right)\left(x+2y\right) دۇر. \frac{x-2y}{x+2y} نى \frac{x-2y}{x-2y} كە كۆپەيتىڭ. \frac{x+2y}{x-2y} نى \frac{x+2y}{x+2y} كە كۆپەيتىڭ.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} بىلەن \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 1 نى \frac{4xy}{4xy} كە كۆپەيتىڭ.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{4xy}{4xy} بىلەن \frac{x^{2}+4y^{2}}{4xy} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} نى \frac{4xy+x^{2}+4y^{2}}{4xy} گە كۆپەيتىڭ.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) نى يەككە ئاددىي كەسىر شەكلىدە ئىپادىلەڭ.
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} نى \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} نىڭ ئەكس سانىغا كۆپەيتىش ئارقىلىق \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} نى \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} گە بۆلۈڭ.
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
2xy نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
\frac{1}{x\left(x-2y\right)}
2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right) نى سۈرەت ۋە مەخرەجدىن يېيىشتۈرۈڭ.
\frac{1}{x^{2}-2xy}
ئىپادىنى يېيىڭ.