y نى يېشىش
y=-\frac{\cos(x)}{1-x}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 1
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\cos(x)+y=xy
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار y قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى y گە كۆپەيتىڭ.
\cos(x)+y-xy=0
ھەر ئىككى تەرەپتىن xy نى ئېلىڭ.
y-xy=-\cos(x)
ھەر ئىككى تەرەپتىن \cos(x) نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
\left(1-x\right)y=-\cos(x)
y نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(1-x\right)y}{1-x}=-\frac{\cos(x)}{1-x}
ھەر ئىككى تەرەپنى 1-x گە بۆلۈڭ.
y=-\frac{\cos(x)}{1-x}
1-x گە بۆلگەندە 1-x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
y=-\frac{\cos(x)}{1-x}\text{, }y\neq 0
ئۆزگەرگۈچى مىقدار y قىممەت 0 گە تەڭ ئەمەس.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}