ئاساسىي مەزمۇنغا ئاتلاش
w.r.t. n نى پارچىلاش
Tick mark Image
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{\mathrm{d}}{\mathrm{d}n}(\cos(180n+90))
تارقىتىش قانۇنى بويىچە 2n+1 نى 90 گە كۆپەيتىڭ.
\left(-\sin(180n^{1}+90)\right)\frac{\mathrm{d}}{\mathrm{d}n}(180n^{1}+90)
ئەگەر F ئوخشىمايدىغان ئىككى دىففېرېنسىيال فۇنكسىيە f\left(u\right) ۋە u=g\left(x\right) دىن تۈزۈلگەن بولسا، ئۇنداقتا ئەگەر F\left(x\right)=f\left(g\left(x\right)\right) بولسا، F نىڭ ھاسىلىسى ئايرىم-ئايرىم ھالدا u نى g ۋە x غا كۆپەيتكەندىكى f نىڭ ھاسىلىسىدۇر، يەنى \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) دۇر.
\left(-\sin(180n^{1}+90)\right)\times 180n^{1-1}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
-180\sin(180n^{1}+90)
ئاددىيلاشتۇرۇڭ.
-180\sin(180n+90)
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.