q نى يېشىش
\left\{\begin{matrix}q=\frac{\alpha t^{2}}{x\Delta }\text{, }&t\neq 0\text{ and }\alpha \neq 0\text{ and }x\neq 0\text{ and }\Delta \neq 0\\q\neq 0\text{, }&\left(\Delta =0\text{ and }t=0\right)\text{ or }\left(x=0\text{ and }t=0\right)\text{ or }\left(x=0\text{ and }\alpha =0\text{ and }t\neq 0\right)\text{ or }\left(\Delta =0\text{ and }\alpha =0\text{ and }t\neq 0\right)\end{matrix}\right.
t نى يېشىش (complex solution)
\left\{\begin{matrix}t=-\alpha ^{-\frac{1}{2}}\sqrt{q}\sqrt{x}\sqrt{\Delta }\text{; }t=\alpha ^{-\frac{1}{2}}\sqrt{q}\sqrt{x}\sqrt{\Delta }\text{, }&q\neq 0\text{ and }\alpha \neq 0\\t\in \mathrm{C}\text{, }&\left(x=0\text{ or }\Delta =0\right)\text{ and }\alpha =0\text{ and }q\neq 0\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\Delta xq=1\alpha t^{2}
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار q قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى q گە كۆپەيتىڭ.
qx\Delta =\alpha t^{2}
ئەزالارنى قايتا رەتلەڭ.
x\Delta q=\alpha t^{2}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{x\Delta q}{x\Delta }=\frac{\alpha t^{2}}{x\Delta }
ھەر ئىككى تەرەپنى \Delta x گە بۆلۈڭ.
q=\frac{\alpha t^{2}}{x\Delta }
\Delta x گە بۆلگەندە \Delta x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
q=\frac{\alpha t^{2}}{x\Delta }\text{, }q\neq 0
ئۆزگەرگۈچى مىقدار q قىممەت 0 گە تەڭ ئەمەس.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}