n نى يېشىش (complex solution)
\left\{\begin{matrix}n=-\frac{1}{\Delta -1}\text{, }&\Delta \neq 1\\n\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
x نى يېشىش (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&\Delta =\frac{n-1}{n}\text{ and }n\neq 0\end{matrix}\right.
n نى يېشىش
\left\{\begin{matrix}n=-\frac{1}{\Delta -1}\text{, }&\Delta \neq 1\\n\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
x نى يېشىش
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&\Delta =\frac{n-1}{n}\text{ and }n\neq 0\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\Delta xn=xn-x
تارقىتىش قانۇنى بويىچە x نى n-1 گە كۆپەيتىڭ.
\Delta xn-xn=-x
ھەر ئىككى تەرەپتىن xn نى ئېلىڭ.
\left(\Delta x-x\right)n=-x
n نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(x\Delta -x\right)n=-x
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(x\Delta -x\right)n}{x\Delta -x}=-\frac{x}{x\Delta -x}
ھەر ئىككى تەرەپنى \Delta x-x گە بۆلۈڭ.
n=-\frac{x}{x\Delta -x}
\Delta x-x گە بۆلگەندە \Delta x-x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
n=-\frac{1}{\Delta -1}
-x نى \Delta x-x كە بۆلۈڭ.
\Delta xn=xn-x
تارقىتىش قانۇنى بويىچە x نى n-1 گە كۆپەيتىڭ.
\Delta xn-xn=-x
ھەر ئىككى تەرەپتىن xn نى ئېلىڭ.
\Delta xn-xn+x=0
x نى ھەر ئىككى تەرەپكە قوشۇڭ.
\left(\Delta n-n+1\right)x=0
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(n\Delta -n+1\right)x=0
تەڭلىمە ئۆلچەملىك بولدى.
x=0
0 نى n\Delta -n+1 كە بۆلۈڭ.
\Delta xn=xn-x
تارقىتىش قانۇنى بويىچە x نى n-1 گە كۆپەيتىڭ.
\Delta xn-xn=-x
ھەر ئىككى تەرەپتىن xn نى ئېلىڭ.
\left(\Delta x-x\right)n=-x
n نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(x\Delta -x\right)n=-x
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(x\Delta -x\right)n}{x\Delta -x}=-\frac{x}{x\Delta -x}
ھەر ئىككى تەرەپنى \Delta x-x گە بۆلۈڭ.
n=-\frac{x}{x\Delta -x}
\Delta x-x گە بۆلگەندە \Delta x-x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
n=-\frac{1}{\Delta -1}
-x نى \Delta x-x كە بۆلۈڭ.
\Delta xn=xn-x
تارقىتىش قانۇنى بويىچە x نى n-1 گە كۆپەيتىڭ.
\Delta xn-xn=-x
ھەر ئىككى تەرەپتىن xn نى ئېلىڭ.
\Delta xn-xn+x=0
x نى ھەر ئىككى تەرەپكە قوشۇڭ.
\left(\Delta n-n+1\right)x=0
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(n\Delta -n+1\right)x=0
تەڭلىمە ئۆلچەملىك بولدى.
x=0
0 نى n\Delta -n+1 كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}