كۆپەيتكۈچى
\left(1-T\right)\left(T+2\right)
ھېسابلاش
\left(1-T\right)\left(T+2\right)
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=-1 ab=-2=-2
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -T^{2}+aT+bT+2 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=1 b=-2
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(-T^{2}+T\right)+\left(-2T+2\right)
-T^{2}-T+2 نى \left(-T^{2}+T\right)+\left(-2T+2\right) شەكلىدە قايتا يېزىڭ.
T\left(-T+1\right)+2\left(-T+1\right)
بىرىنچى گۇرۇپپىدىن T نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(-T+1\right)\left(T+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا -T+1 نى چىقىرىڭ.
-T^{2}-T+2=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
T=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
T=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
-4 نى -1 كە كۆپەيتىڭ.
T=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
4 نى 2 كە كۆپەيتىڭ.
T=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
1 نى 8 گە قوشۇڭ.
T=\frac{-\left(-1\right)±3}{2\left(-1\right)}
9 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
T=\frac{1±3}{2\left(-1\right)}
-1 نىڭ قارشىسى 1 دۇر.
T=\frac{1±3}{-2}
2 نى -1 كە كۆپەيتىڭ.
T=\frac{4}{-2}
± پىلۇس بولغاندىكى تەڭلىمە T=\frac{1±3}{-2} نى يېشىڭ. 1 نى 3 گە قوشۇڭ.
T=-2
4 نى -2 كە بۆلۈڭ.
T=-\frac{2}{-2}
± مىنۇس بولغاندىكى تەڭلىمە T=\frac{1±3}{-2} نى يېشىڭ. 1 دىن 3 نى ئېلىڭ.
T=1
-2 نى -2 كە بۆلۈڭ.
-T^{2}-T+2=-\left(T-\left(-2\right)\right)\left(T-1\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -2 نى x_{1} گە ۋە 1 نى x_{2} گە ئالماشتۇرۇڭ.
-T^{2}-T+2=-\left(T+2\right)\left(T-1\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}