كۆپەيتكۈچى
-3\left(x-2\right)^{2}
ھېسابلاش
-3\left(x-2\right)^{2}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3\left(-x^{2}-4+4x\right)
3 نى ئاجرىتىپ چىقىرىڭ.
-x^{2}+4x-4
-x^{2}-4+4x نى ئويلىشىپ كۆرۈڭ. كۆپ ئەزالىقنى ئۆلچەملىك شەكىلدە رەتلەڭ. ئەزالارنى چوڭدىن كىچىككە تىزىڭ.
a+b=4 ab=-\left(-4\right)=4
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -x^{2}+ax+bx-4 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,4 2,2
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 4 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+4=5 2+2=4
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=2
4 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-x^{2}+2x\right)+\left(2x-4\right)
-x^{2}+4x-4 نى \left(-x^{2}+2x\right)+\left(2x-4\right) شەكلىدە قايتا يېزىڭ.
-x\left(x-2\right)+2\left(x-2\right)
بىرىنچى گۇرۇپپىدىن -x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(x-2\right)\left(-x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-2 نى چىقىرىڭ.
3\left(x-2\right)\left(-x+2\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
-3x^{2}+12x-12=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
12 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-12±\sqrt{144+12\left(-12\right)}}{2\left(-3\right)}
-4 نى -3 كە كۆپەيتىڭ.
x=\frac{-12±\sqrt{144-144}}{2\left(-3\right)}
12 نى -12 كە كۆپەيتىڭ.
x=\frac{-12±\sqrt{0}}{2\left(-3\right)}
144 نى -144 گە قوشۇڭ.
x=\frac{-12±0}{2\left(-3\right)}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-12±0}{-6}
2 نى -3 كە كۆپەيتىڭ.
-3x^{2}+12x-12=-3\left(x-2\right)\left(x-2\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 2 نى x_{1} گە ۋە 2 نى x_{2} گە ئالماشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}