x өчен чишелеш
x=-\frac{3}{4}=-0.75
x=\frac{1}{2}=0.5
Граф
Уртаклык
Клип тактага күчереп
a+b=2 ab=8\left(-3\right)=-24
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне 8x^{2}+ax+bx-3 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,24 -2,12 -3,8 -4,6
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -24 продуктын бирүче андый һәр парларны күрсәтегез.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Һәр пар өчен сумманы исәпләү.
a=-4 b=6
Чишелеш - 2 бирүче пар.
\left(8x^{2}-4x\right)+\left(6x-3\right)
8x^{2}+2x-3-ны \left(8x^{2}-4x\right)+\left(6x-3\right) буларак яңадан языгыз.
4x\left(2x-1\right)+3\left(2x-1\right)
4x беренче һәм 3 икенче төркемдә тапкырлау.
\left(2x-1\right)\left(4x+3\right)
Булу үзлеген кулланып, 2x-1 гомуми шартны чыгартыгыз.
x=\frac{1}{2} x=-\frac{3}{4}
Тигезләмә чишелешләрен табу өчен, 2x-1=0 һәм 4x+3=0 чишегез.
8x^{2}+2x-3=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-2±\sqrt{2^{2}-4\times 8\left(-3\right)}}{2\times 8}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 8'ны a'га, 2'ны b'га һәм -3'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 8\left(-3\right)}}{2\times 8}
2 квадратын табыгыз.
x=\frac{-2±\sqrt{4-32\left(-3\right)}}{2\times 8}
-4'ны 8 тапкыр тапкырлагыз.
x=\frac{-2±\sqrt{4+96}}{2\times 8}
-32'ны -3 тапкыр тапкырлагыз.
x=\frac{-2±\sqrt{100}}{2\times 8}
4'ны 96'га өстәгез.
x=\frac{-2±10}{2\times 8}
100'нан квадрат тамырын чыгартыгыз.
x=\frac{-2±10}{16}
2'ны 8 тапкыр тапкырлагыз.
x=\frac{8}{16}
Хәзер ± плюс булганда, x=\frac{-2±10}{16} тигезләмәсен чишегез. -2'ны 10'га өстәгез.
x=\frac{1}{2}
8 чыгартып һәм ташлап, \frac{8}{16} өлешен иң түбән буыннарга кадәр киметү.
x=-\frac{12}{16}
Хәзер ± минус булганда, x=\frac{-2±10}{16} тигезләмәсен чишегез. 10'ны -2'нан алыгыз.
x=-\frac{3}{4}
4 чыгартып һәм ташлап, \frac{-12}{16} өлешен иң түбән буыннарга кадәр киметү.
x=\frac{1}{2} x=-\frac{3}{4}
Тигезләмә хәзер чишелгән.
8x^{2}+2x-3=0
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
8x^{2}+2x-3-\left(-3\right)=-\left(-3\right)
Тигезләмәнең ике ягына 3 өстәгез.
8x^{2}+2x=-\left(-3\right)
-3'ны үзеннән алу 0 калдыра.
8x^{2}+2x=3
-3'ны 0'нан алыгыз.
\frac{8x^{2}+2x}{8}=\frac{3}{8}
Ике якны 8-га бүлегез.
x^{2}+\frac{2}{8}x=\frac{3}{8}
8'га бүлү 8'га тапкырлауны кире кага.
x^{2}+\frac{1}{4}x=\frac{3}{8}
2 чыгартып һәм ташлап, \frac{2}{8} өлешен иң түбән буыннарга кадәр киметү.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{3}{8}+\left(\frac{1}{8}\right)^{2}
\frac{1}{8}-не алу өчен, \frac{1}{4} — x элементының коэффициентын — 2-гә бүлегез. Аннары \frac{1}{8}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{3}{8}+\frac{1}{64}
Вакланманың санаучысын һәм ваклаучысын квадратлап, \frac{1}{8} квадратын табыгыз.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{25}{64}
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{3}{8}'ны \frac{1}{64}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
\left(x+\frac{1}{8}\right)^{2}=\frac{25}{64}
x^{2}+\frac{1}{4}x+\frac{1}{64} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{1}{8}=\frac{5}{8} x+\frac{1}{8}=-\frac{5}{8}
Гадиләштерегез.
x=\frac{1}{2} x=-\frac{3}{4}
Тигезләмәнең ике ягыннан \frac{1}{8} алыгыз.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}