Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x^{2}+2x-5-x^{2}=-6x+4
x^{2}'ны ике яктан алыгыз.
x^{2}+2x-5=-6x+4
x^{2} алу өчен, 2x^{2} һәм -x^{2} берләштерегз.
x^{2}+2x-5+6x=4
Ике як өчен 6x өстәгез.
x^{2}+8x-5=4
8x алу өчен, 2x һәм 6x берләштерегз.
x^{2}+8x-5-4=0
4'ны ике яктан алыгыз.
x^{2}+8x-9=0
-9 алу өчен, -5 4'нан алыгыз.
a+b=8 ab=-9
Тигезләмәне чишү өчен, x^{2}+8x-9'ны x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын кулланып тапкырлагыз. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,9 -3,3
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -9 продуктын бирүче андый һәр парларны күрсәтегез.
-1+9=8 -3+3=0
Һәр пар өчен сумманы исәпләү.
a=-1 b=9
Чишелеш - 8 бирүче пар.
\left(x-1\right)\left(x+9\right)
Алынган кыйммәтләрне кулланып, \left(x+a\right)\left(x+b\right) тапкырланган аңлатманы яңадан языгыз.
x=1 x=-9
Тигезләмә чишелешләрен табу өчен, x-1=0 һәм x+9=0 чишегез.
2x^{2}+2x-5-x^{2}=-6x+4
x^{2}'ны ике яктан алыгыз.
x^{2}+2x-5=-6x+4
x^{2} алу өчен, 2x^{2} һәм -x^{2} берләштерегз.
x^{2}+2x-5+6x=4
Ике як өчен 6x өстәгез.
x^{2}+8x-5=4
8x алу өчен, 2x һәм 6x берләштерегз.
x^{2}+8x-5-4=0
4'ны ике яктан алыгыз.
x^{2}+8x-9=0
-9 алу өчен, -5 4'нан алыгыз.
a+b=8 ab=1\left(-9\right)=-9
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне x^{2}+ax+bx-9 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,9 -3,3
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -9 продуктын бирүче андый һәр парларны күрсәтегез.
-1+9=8 -3+3=0
Һәр пар өчен сумманы исәпләү.
a=-1 b=9
Чишелеш - 8 бирүче пар.
\left(x^{2}-x\right)+\left(9x-9\right)
x^{2}+8x-9-ны \left(x^{2}-x\right)+\left(9x-9\right) буларак яңадан языгыз.
x\left(x-1\right)+9\left(x-1\right)
x беренче һәм 9 икенче төркемдә тапкырлау.
\left(x-1\right)\left(x+9\right)
Булу үзлеген кулланып, x-1 гомуми шартны чыгартыгыз.
x=1 x=-9
Тигезләмә чишелешләрен табу өчен, x-1=0 һәм x+9=0 чишегез.
2x^{2}+2x-5-x^{2}=-6x+4
x^{2}'ны ике яктан алыгыз.
x^{2}+2x-5=-6x+4
x^{2} алу өчен, 2x^{2} һәм -x^{2} берләштерегз.
x^{2}+2x-5+6x=4
Ике як өчен 6x өстәгез.
x^{2}+8x-5=4
8x алу өчен, 2x һәм 6x берләштерегз.
x^{2}+8x-5-4=0
4'ны ике яктан алыгыз.
x^{2}+8x-9=0
-9 алу өчен, -5 4'нан алыгыз.
x=\frac{-8±\sqrt{8^{2}-4\left(-9\right)}}{2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 1'ны a'га, 8'ны b'га һәм -9'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-9\right)}}{2}
8 квадратын табыгыз.
x=\frac{-8±\sqrt{64+36}}{2}
-4'ны -9 тапкыр тапкырлагыз.
x=\frac{-8±\sqrt{100}}{2}
64'ны 36'га өстәгез.
x=\frac{-8±10}{2}
100'нан квадрат тамырын чыгартыгыз.
x=\frac{2}{2}
Хәзер ± плюс булганда, x=\frac{-8±10}{2} тигезләмәсен чишегез. -8'ны 10'га өстәгез.
x=1
2'ны 2'га бүлегез.
x=-\frac{18}{2}
Хәзер ± минус булганда, x=\frac{-8±10}{2} тигезләмәсен чишегез. 10'ны -8'нан алыгыз.
x=-9
-18'ны 2'га бүлегез.
x=1 x=-9
Тигезләмә хәзер чишелгән.
2x^{2}+2x-5-x^{2}=-6x+4
x^{2}'ны ике яктан алыгыз.
x^{2}+2x-5=-6x+4
x^{2} алу өчен, 2x^{2} һәм -x^{2} берләштерегз.
x^{2}+2x-5+6x=4
Ике як өчен 6x өстәгез.
x^{2}+8x-5=4
8x алу өчен, 2x һәм 6x берләштерегз.
x^{2}+8x=4+5
Ике як өчен 5 өстәгез.
x^{2}+8x=9
9 алу өчен, 4 һәм 5 өстәгез.
x^{2}+8x+4^{2}=9+4^{2}
4-не алу өчен, 8 — x элементының коэффициентын — 2-гә бүлегез. Аннары 4'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+8x+16=9+16
4 квадратын табыгыз.
x^{2}+8x+16=25
9'ны 16'га өстәгез.
\left(x+4\right)^{2}=25
x^{2}+8x+16 тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+4\right)^{2}}=\sqrt{25}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+4=5 x+4=-5
Гадиләштерегез.
x=1 x=-9
Тигезләмәнең ике ягыннан 4 алыгыз.